

September 6, 2013

Mr. Harry Burrowes, P.E. City of San Bruno Crestmoor Neighborhood Reconstruction Project 567 El Camino Real San Bruno, CA 94066

REPORT
MAY 2013
SURFACE SOIL SAMPLING RESULTS
GLENVIEW FIRE AREA
SAN BRUNO, CA

This Report describes the results of a surface soil sampling and analytical testing program conducted in May 2013 in the Glenview Fire burn area at the request of the City of San Bruno. This work was motivated by concern that combustion of common building materials such as plastic, asbestos, and metal present in the homes that were burned may have resulted in the deposition of small quantities of potentially toxic ash on the ground in the burn area. Uncontrolled combustion of plastics in particular is known to produce small amounts of chemicals known as polynuclear aromatic hydrocarbons or PAHs, dioxins, and furans, which are suspected carcinogens.

EXECUTIVE SUMMARY

GEOLOGICA collected six surface soil samples from within the Glenview burn area and an additional background sample approximately 1/4 mile east of the burn area. The seven soil samples were analyzed for PAHs, dioxins and furans, metals, and asbestos. Asbestos was not found in any of the samples. Metals were found in all of the samples at levels that are typical of Bay Area soil background levels and do not show impacts from the fire. PAHs were found at low concentrations in two samples. Traces of dioxins and furans that could be related to ash from the fire were found in all of the soil samples. None of the chemicals were detected at levels that pose significant risk to human health. In conclusion, no evidence was found that surface soil in the Glenview burn area requires further investigation or cleanup.

1.0 INTRODUCTION

GEOLOGICA Inc. (GEOLOGICA) is pleased to submit this Report to the City of San Bruno (the City) to describe the results of a limited surface soil quality investigation conducted in the area of residential properties located in the Glenview Fire area in San Bruno, CA (the "site"). This work was conducted essentially as described in our Sampling and Analysis Plan (SAP) dated November 30, 2012.

1.1 Site Background

Building debris from destroyed and damaged houses within the Glenview Fire area was removed under the oversight of the California Department of Resources Recycling and Recovery (CalRecycle) and the San Mateo County Environmental Health System (SMC EHS). Cleanup of waste from the fire reportedly involved removal of building debris, ash, and visibly impacted soil from each of the affected parcels. After completing cleanup activities, the California Department of Resources Recycling and Recovery (CalRecycle) engaged Arcadis U.S., Inc. (Arcadis) to collect samples of soil from each of the 38 parcels where homes were destroyed. Three soil samples from each parcel were tested for Title 22 metals. Although all detected metals concentrations were below the cleanup goals identified for soil, health concerns remain among homeowners about soil contaminants potentially present in airborne dust generated from bare soil from ongoing home construction activities in the area.

The purpose of the soil sampling program executed in May 2013 was to further assess whether residual ash and debris from combustion of construction materials from houses in this area may have resulted in the continued presence of constituents of potential concern in surface soils which could become airborne during windy conditions.

1.2 Technical Approach

To evaluate whether exposed surface soil in vacant lots in the Glenview area contain detectable concentrations of possible combustion byproducts, GEOLOGICA collected samples of the soil in the upper 1-inch of the soil column on five vacant lots within the burn zone to test soils for a broad suite of constituents. For quality assurance purposes, GEOLOGICA collected a field duplicate sample from one of the vacant lots and a background sample presumably located outside the area potentially impacted by fire opposite 850 Glenview Drive.

2.0 SCOPE OF WORK COMPLETED

The Scope of Work completed included the following tasks:

- PRELIMINARY FIELD ACTIVITIES Prior to the start of fieldwork, GEOLOGICA conducted a site walk to evaluate proposed sampling locations. In addition, GEOLOGICA prepared a SAP to describe soil sampling, laboratory analysis, and data evaluation procedures. The San Mateo County Environmental Health Department reviewed the sampling and analysis plan prior to beginning field work. Dean Peterson with the San Mateo County Environmental Health Department verbally approved the November 2012 SAP in a meeting held in the City of San Bruno offices on May 8, 2013. After meeting with the City and the County Health Department GEOLOGICA engaged McCampbell Analytical, Inc., a California-certified analytical testing laboratory, to analyze the soil samples.
- Soil Sampling On May 17, 2013, Geologica collected surface soil samples on five (5) parcels within the Glenview Fire burn area including parcels located at 1641 Claremont Drive, 1701 Earl Avenue, 1110, 1690, and 981 Glenview Drive as shown on Figure 1. These parcel locations were selected to span the area of the burn zone. To expedite sampling activities, parcels were selected for testing that are owned or readily accessible by the City. In addition, Geologica collected a background soil sample at the vacant lot opposite (west) of Peace Lutheran Church at 850 Glenview Drive. Also, for quality control purposes Geologica collected one duplicate soil sample (labeled "SS-FD") at the parcel located at 1110 Glenview Drive in the burn zone.
- **REPORTING** GEOLOGICA prepared this Report.

3.0 FIELD PROCEDURES

Field sampling procedures for collection of surface soil samples within and near the burn area are described below.

- Sampling Procedures One area of bare soil located as close to the likely location of the home formerly located on the parcel was selected on each of the above identified parcels for sampling. A discrete sample of the upper 1-inch of the soil column was collected using a clean, dedicated plastic scoop to fill pre-cleaned sample containers provided by the analytical laboratory. After sampling, the sample containers were labeled with the date, time, and sample identification number and placed in an ice chest cooled with bagged ice.
- Sample Handling After completing the sampling, the seven (7) soil samples were couriered under standard EPA chain of custody procedures to McCampbell Analytical, Inc. (McCampbell) in Pittsburg, CA for analysis.

4.0 LABORATORY ANALYTICAL TESTING

The soil samples collected during Task 2 were submitted to a California-certified analytical laboratory. Up to seven (7) soil samples including one quality control field duplicate sample and one background sample will be analyzed for the following:

- PAHs using EPA Method 8270-sims;
- Title 22 metals using EPA 6020 and 7471A Methods;
- Dioxins and furans by EPA Method 8290;
- Asbestos, and,
- Moisture.

Soil sample results were reported by the analytical laboratory on a dry-weight-basis. Samples were analyzed on a standard 20 to 25 day turn-around basis. A copy of the analytical testing report is presented in **Attachment A**.

5.0 DATA VALIDATION AND EVALUATION

GEOLOGICA reviewed the sampling data and conducted a U.S. Environmental Protection Agency Level III data validation evaluation of the analytical data reported by analytical laboratory. The quality control sample results were evaluated to assess whether they were within compliance criteria. The laboratory blanks, holding times, laboratory control sample/laboratory control sample duplicate, and blank spike/blank spike duplicate recoveries for the field samples will be reviewed to assess whether they are within their respective compliance criteria. The data quality review indicated that the laboratory testing results are suitable for the purposes of this study. A copy of the laboratory data quality review memorandum is presented in **Attachment A**.

After completing the data quality review and determining that the project data are valid and suitable for use in site characterization, GEOLOGICA tabulated the sampling data. GEOLOGICA compared the analytical testing results to the California Human Health Screening Levels (CHHSLs) for Residential Land Use established by the California Environmental Protection Agency (Cal EPA, 2005; 2009) and the Regional Screening Levels (RSLs) established by the U.S. EPA Region 9 (April 2012 update) for constituents for which CHHSLs have not been established.

6.0 RESULTS

Results of laboratory analytical testing are presented below. Testing results are summarized in **Table 1**. A copy of the laboratory testing report is presented in **Attachment A**.

6.1 Polynuclear Aromatic Hydrocarbons (PAHS)

With the exception of the detection of benzo(a)anthracene in the sample collected at 1701 Earl Avenue and PAHs detected in the background soil sample, PAHs were not detected in soil samples collected in the burn area. Benzo(a)anthracene was detected at a concentration of 0.012 milligrams per kilogram (mg/kg) in the sample collected at 1701 Earl Avenue. The reported concentration of benzo(a)anthracene in the sample is below the EPA Region 9 RSL of 0.15 mg/kg established for this constituent for Residential Land Use. The PAHs benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(g,h,i)perylene, benzo(a)pyrene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, phenanthrene, and pyrene were detected at concentrations ranging from 0.034 to 0.15 mg/kg in the background sample (SS-BG) collected in exposed soil in the vacant lot opposite (south) of 850 Glenview Drive. The detected concentration of benzo(a)pyrene, 0.061 mg/kg, in the background sample exceeds the Residential CHHSL of 0.038 mg/kg and EPA Region 9 RSL of 0.015 mg/kg established for this constituent. None of the other PAHs detected in this sample exceed conservative Residential Land Use criteria.

6.2 Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Trace concentrations of dioxins and furans were detected in all of the soil samples (including the background soil sample) collected in the burn area at concentrations ranging from 0.032 to 774 picograms per gram (pg/g), as listed in **Table 1**. The dioxin 2,3,7,8-tetrachlorodibenzodioxin (2,3,7,8-TCDD) was detected at concentrations ranging from 0.072 to 0.612 pg/g in samples collected at 1655 Claremont Drive, 1110 Glenview Drive, and in the background sample. Three of four 2,3,7,8-TCDD detections were estimated concentrations, below the normal reporting limit of 0.5 pg/g. None of the detected concentrations exceeded the Residential CHHSL and EPA Region 9 RSL of 4.6 pg/g established for this constituent.

Individual regulatory screening criteria have not been established for the majority of the dioxins and furans reported by the laboratory. To assess the potential significance of the constituent detections reported in **Table 1**, Toxic Equivalents (TEQs), were used to report the toxicity-weighted masses of mixtures of dioxins. The TEQ method of dioxin reporting was developed by the World Health Organization and provides a more meaningful measure of potential toxicity than simply reporting the total number of grams

of a mixture of variously toxic compounds because the TEQ method offers toxicity information about the mixture.

Within the TEQ method, each dioxin compound has been assigned a Toxic Equivalency Factor, or TEF. This factor denotes a given dioxin compound's toxicity relative to 2,3,7,8-TCDD, which is assigned the maximum toxicity designation of one. Other dioxin compounds are given equal or lower numbers, with each number roughly proportional to its toxicity relative to that of 2,3,7,8-TCDD. The TEQ for each sample analyzed for dioxins and furans is listed in Table 1 and was calculated by the laboratory as the sum of the products of the concentrations of each compound multiplied by its TEF. Calculated TEQs for the seven samples ranged from 0.419 to 2.52 pg TEQ/g, and are all below the Residential CHHSL and EPA Region 9 RSL of 4.6 pg/g established for 2,3,7,8-TCDD.

6.3 Metals

The metals antimony, arsenic, barium, cadmium, chromium, cobalt, copper, lead, mercury, molybdenum, nickel, vanadium, and zinc were detected in one or more of the soil samples collected at the site at concentrations ranging from 0.056 to 190 mg/kg. The detected metals concentrations were within the range of metals detections previously reported for soil samples collected in the Glenview fire area in 2010. With the exception of reported concentrations of arsenic in the soil samples, none of the detected metals concentrations exceeded their respective Residential CHHSLs and EPA Region 9 RSLs. Arsenic was detected at concentrations ranging from 4.2 to 12 mg/kg, greater than the Residential CHHSL of 0.07 mg/kg and EPA Region 9 RSL of 0.39 mg/kg in all samples. However, the detected arsenic concentrations are within the range of natural background concentrations for this element commonly observed in Bay Area soil and below the cleanup goal for arsenic of 14 mg/kg identified in the report entitled "Determination of Soil Cleanup Goals, Glenview Fire Incident, San Bruno, California," prepared by ARCADIS and dated October 2010 (ARCADIS 2010).

6.4 Asbestos

Asbestos was not detected in any of the soil samples.

7.0 DISCUSSION AND CONCLUSIONS

GEOLOGICA collected six surface soil samples from within the Glenview burn area and an additional background sample approximately 1/4 mile east of the burn area on a vacant lot opposite 850 Glenview Drive. The seven soil samples were analyzed for

constituents including PAHs, dioxins and furans, metals, and asbestos, that could potentially be present in soil impacted by ash or other processes associated with the fire.

- PAHs were mainly detected in the background soil sample. The origin of PAHs in the background sample is unknown but given the magnitude of detections does not appear to warrant further action.
- Dioxins and furans were detected in all of the samples at concentrations below residential land use criteria. The detected concentrations are comparable to values reported in a study funded by the Washington State Department of Ecology of background dioxin concentrations in Washington State parks (Draft Washington State Background Study, Rural State Parks, Washington State, June 2011). The detected concentrations are also comparable to dioxin and furan values reported in a background study conducted in support of cleanup activities at the Santa Susana Field Laboratory (SSFL) in Ventura County, California (Soil Background Report, Santa Susana Field Laboratory, Ventura County, California, September 2005). Consequently, although the reported dioxin and furan detections may indicate some minor impact related to the fire, the detected values do not appear to warrant further action.
- A number of naturally occurring metals were detected in surface soil samples
 collected within the burn area. With the exception of arsenic, none of the metal
 concentrations reported exceed typical residential land use criteria. Arsenic
 concentrations in all samples exceed its CHHSL and EPA RSL for residential land
 use. However, the detected arsenic concentrations are within the range of natural
 background concentrations for this element commonly observed in Bay Area soil.
- Asbestos was not detected in any of the soil samples.

In conclusion, there is no evidence that surface soil in the Glenview burn area requires further investigation or cleanup.

Should you have any questions about this Report, please do not hesitate to call Dan at (415) 597-7885 or Brian at (415) 597-7883.

Sincerely,

GEOLOGICA INC.

Daniel W. Matthews, P.G. Senior Hydrogeologist

Daniel W Mathews

Brian F. Aubry, P.G., C.E.G., C.Hg. Principal

Enclosures:

Figure 1 – Site Layout Map with Sampling Locations Table 1 – Summary of May 17, 2013 Surface Soil Sampling Results

TABLE

Table 1 Glenview Fire Area San Bruno, CA

Summary of May 17, 2013 Surface Soil Sampling Results

		1655						Background		
		Claremont			1690	1701 Earl	981	(opposite 850		EPA
Analyte	Units	Dr	1110 Gle	nview Dr	Glenview Dr	Ave	Glenview Dr	Glenview Dr)	CA EPA	Region 9
Sample ID		1655	1110	SS-FD	1690	1701	981	SS-BG	CHHSLs ⁽¹⁾	RSLs ⁽²⁾
	•				•					
Polynuclear Aromatic H					T					1
Acenaphthene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	3,400
Acenaphthylene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	
Anthracene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	17,000
Benzo(a)anthracene	mg/kg	<0.01	<0.013	<0.01	<0.12	0.012	<0.012	0.064	-	0.15
Benzo(b)fluoranthene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.074	-	0.15
Benzo(k)fluoranthene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.034		1.5
Benzo(g,h,i)perylene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.063	-	-
Benzo(a)pyrene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.061	0.038	0.015
Chrysene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.073		15
Dibenzo(a,h)anthracene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	0.015
Fluoranthene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.12	-	2,300
Fluorene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	2,300
Indeno(1,2,3-cd)pyrene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.051	-	0.15
1-Methylnaphthalene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	16
2-Methylnaphthalene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	230
Naphthalene	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	<0.020	-	3.6
		< 0.01	< 0.013	< 0.01	< 0.12	< 0.012	< 0.012	0.057	-	-
Phenanthrene	mg/kg									
Phenanthrene Pyrene	mg/kg mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.15	-	1,700
Pyrene	mg/kg	<0.01	<0.013	<0.01					-	1,700
Pyrene Polychlorinated Dibenze	mg/kg	<0.01	<0.013	<0.01	<0.12	<0.012	<0.012	0.15		
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD	mg/kg	<0.01 s and Polychlori 0.072 J	<0.013 ianted Dibenzot 0.212 J	<0.01 <i>furans</i> 0.612	<0.12	<0.012	<0.012	0.15 0.122 J	4.6	1,700
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD	mg/kg o-p-Dioxins	<0.01 s and Polychlori 0.072 J 0.144 J	<0.013 ianted Dibenzot 0.212 J <2.5	<0.01 furans 0.612 0.078 J	<0.12 <0.5 0.302 JM	<0.012 <0.5 <2.5	<0.012 <0.5 0.462 JM	0.15 0.122 J 0.602 JM		
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	mg/kg o-p-Dioxin: pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM	<0.013 ianted Dibenzot 0.212 J	<0.01 <i>furans</i> 0.612	<0.12 <0.5 0.302 JM 0.514 JM	<0.012	<0.012	0.15 0.122 J		
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD	mg/kg o-p-Dioxins pg/g pg/g	<0.01 s and Polychlori 0.072 J 0.144 J	<0.013 ianted Dibenzot 0.212 J <2.5	<0.01 furans 0.612 0.078 J	<0.12 <0.5 0.302 JM	<0.012 <0.5 <2.5	<0.012 <0.5 0.462 JM	0.15 0.122 J 0.602 JM		
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD	mg/kg o-p-Dioxin: pg/g pg/g pg/g pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM	<0.013 ianted Dibenzot 0.212 J <2.5 0.054 JM	<0.01 furans 0.612 0.078 J 0.136 J	<0.12 <0.5 0.302 JM 0.514 JM	<0.012 <0.5 <2.5 0.092 J	<0.012 <0.5 0.462 JM 0.556 JM	0.15 0.122 J 0.602 JM 0.652 J		
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD	mg/kg o-p-Dioxins pg/g pg/g pg/g pg/g pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J	<0.013 ianted Dibenzot 0.212 J <2.5 0.054 JM 0.184 JM	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J	<0.012 <0.5 <2.5 0.092 J 3.080	<0.012 <0.5 0.462 JM 0.556 JM 3.12	0.15 0.122 J 0.602 JM 0.652 J 2.11 J	4.6 - - -	4.6
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD	mg/kg o-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM	<0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J	4.6 - - - -	4.6
Pyrene Polychlorinated Dibenze 2,3.7,8-TCDD 1,2,3.7,8-PeCDD 1,2,3.4,7,8-HxCDD 1,2,3.6,7,8-HxCDD 1,2,3.7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD	mg/kg o-p-Dioxins pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7	<0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39	4.6 - - - - -	4.6 - - - -
Pyrene Polychlorinated Dibenz: 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	mg/kg o-p-Dioxins pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120	<0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774	0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373	4.6 - - - - -	4.6 - - - - -
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF	mg/kg o-p-Dioxins pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM	<0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J	0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J	4.6 	4.6
Pyrene Polychlorinated Dibenz. 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF	mg/kg o-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM	<0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J	<0.012 <0.55 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J	4.6 - - - - - - - -	4.6 - - - - - - -
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-PeCDF	mg/kg o-p-Dioxin:	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J	<0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 0.164 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J	4.6	4.6
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 0,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF	mg/kg o-p-Dioxin: pg/g pg/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.092 J 0.298 J	<0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 0.164 J 1.05 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J	0.152 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J	4.6 	4.6
Pyrene Polychlorinated Dibenz: 2,3,7,8-TCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF	mg/kg o-p-Dioxins pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.298 J 0.17 JM	<0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM	<0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 0.172 J	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 0.164 J 1.05 J 0.952 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.474 J 0.390 J	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.972 J 0.668 JM	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.624 JM	4.6 	4.6
Pyrene Polychlorinated Dibenz. 2,3,7,8-TCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,8,9-HxCDF 2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	mg/kg o-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.298 J 0.17 JM 0.08 JM	<0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 0.172 J <2.5 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 0.164 J 1.05 J 0.952 J 0.13 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.474 J 0.390 J 0.120 JM	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J 0.668 JM 0.196 JM	0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.624 JM 0.168 JM	4.6 	4.6
Pyrene Polychlorinated Dibenz: 2,3,7,8-TCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF	mg/kg o-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.298 J 0.17 JM 0.08 JM 0.08 JM 0.03 J	 <0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5 0.102 JM 	 <0.01 Surans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 0.172 J <2.5 0.214 J 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 0.164 JM 0.434 J 0.164 J 1.05 J 0.952 J 0.13 J 0.966 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.390 J 0.120 JM 0.546 J	<0.012 <0.05 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.972 J 0.668 JM 0.196 JM 0.892 J	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.684 JM 0.168 JM 0.736 J	4.6 	4.6
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD CCDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HyCDF	mg/kg po-p-Dioxim pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.092 J 0.298 J 0.17 JM 0.08 JM 0.093 J 0.08 JM 0.093 J 3.4	 <0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5 0.102 JM 1.71 J 	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 0.172 J <2.5 0.214 J 2.710 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 1.05 J 0.952 J 0.13 J 0.966 J 15.6	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.474 J 0.390 J 0.120 JM 0.546 J 11.2	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J 0.668 JM 0.196 JM 0.892 J 13.6	0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.624 JM 0.168 JM 0.736 J 9.240	4.6 	4.6
Pyrene Polychlorinated Dibenz: 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF	mg/kg o-p-Dioxin: p9/g p9/g p9/g p9/g p9/g p9/g p9/g p9/g	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.298 J 0.17 JM 0.08 JM 0.3 J 3.4 0.2 J	 <0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5 0.102 JM 1.71 J 0.104 J 	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.062 JM 0.172 J <2.5 0.214 J 2.710 0.090 JM 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 0.164 J 1.05 J 0.952 J 0.13 J 0.966 J 15.6 0.672 JM	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.390 J 0.120 JM 0.546 J 11.2 <2.5	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J 0.668 JM 0.196 JM 0.892 J 13.6 0.746 JM	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.168 JM 0.736 J 9.240 0.662 J	4.6 	4.6
Pyrene Polychlorinated Dibenz: 2,3,7,8-TCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,4,7,8-HxCDD 1,2,3,7,8,9-HxCDD 0,2,3,7,8-PCDF 2,3,4,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-PCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HyCDF 1,2,3,7,8,9-HyCDF 1,2,3,7,8,9-HyCDF 1,2,3,7,8,9-HyCDF	mg/kg o-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.17 JM 0.08 JM 0.3 J 3.4 0.2 J 11.7	 <0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5 0.102 JM 1.71 J 0.104 J 4.98 J 	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 0.108 JM 0.108 JM 0.062 JM 0.172 J <2.5 0.214 J 2.710 0.090 JM 8.68 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 0.164 J 1.05 J 0.952 J 0.13 J 0.966 J 15.6 0.672 JM 35.2	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.390 J 0.120 JM 0.546 J 11.2 <2.5 13.7	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J 0.668 JM 0.196 JM 0.892 J 13.6 0.746 JM 42.7	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.168 JM 0.736 J 9.240 0.662 J 22.5	4.6 	4.6
Pyrene Polychlorinated Dibenz. 2,3,7,8-TCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8,9-HyCDF Total-Tetradioxins Total-Pentadioxins	mg/kg po-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.179 JM 0.08 JM 0.08 JM 0.3 J 3.4 0.2 J 11.7 0.1 J	 <0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5 0.102 JM 1.71 J 0.104 J 4.98 J 0.212 J 	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 0.172 J <2.5 0.214 J 2.710 0.090 JM 8.68 0.612 J 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 2.930 288 0.164 JM 0.434 J 0.164 J 1.05 J 0.952 J 0.13 J 0.966 J 15.6 0.672 JM 35.2 0.354 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.474 J 0.390 J 0.120 JM 0.546 J 11.2 <2.5 13.7 <2.5	<0.012 <0.05 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J 0.668 JM 0.196 JM 0.892 J 13.6 0.746 JM 42.7 0.258 J	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 0.236 J 0.468 J 0.200 J 0.680 J 0.684 JM 0.736 J 9.240 0.662 J 22.5 0.616 J	4.6	4.6
Pyrene Polychlorinated Dibenze 2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8,9-HyCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,	mg/kg po-p-Dioxim pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	<0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.092 J 0.298 J 0.17 JM 0.08 JM 0.3 J 3.4 0.2 J 11.7 0.1 J 0.2 J 2.8	 <0.013 ianted Dibenzoi 0.212 J <2.5 0.054 JM 0.10 JM 3.98 35.7 0.032 JM <2.5 0.138 J <2.5 0.102 JM <1.71 J <0.104 J 4.98 J <2.15 <0.212 J <2.5 <0.302 J 	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.062 JM 0.200 JM 0.172 J <2.5 0.214 J 2.710 0.090 JM 8.68 0.612 J 0.078 J 1.060 J 	 <0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 1.05 J 0.952 J 0.13 J 0.966 J 15.6 0.672 JM 35.2 0.354 J 0.908 J 8.42 	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.474 J 0.390 J 0.120 JM 0.546 J 11.2 <2.5 13.7 <2.5 <2.5 21.9	<0.012 <0.5 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.162 J 0.972 J 0.668 JM 0.196 JM 0.892 J 13.6 0.746 JM 42.7 0.258 J 0.780 J 14.3	0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.168 JM 0.736 J 9.240 0.662 J 22.5 0.616 J 0.600 J	4.6 	4.6
Pyrene Polychlorinated Dibenz. 2,3,7,8-TCDD 1,2,3,4,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,4,6,7,8-HyCDD 0CDD 2,3,7,8-TCDF 2,3,4,7,8-PeCDF 1,2,3,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8,9-HyCDF Total-Tetradioxins Total-Pentadioxins	mg/kg po-p-Dioxin: pg/g pg/g pg/g pg/g pg/g pg/g pg/g pg/	 <0.01 s and Polychlori 0.072 J 0.144 J 0.174 JM 0.726 J 0.318 JM 13.7 120 0.048 JM 0.206 JM 0.092 J 0.298 J 0.17 JM 0.08 JM 0.3 J 3.4 0.2 J 11.7 0.1 J 0.2 J 	 <0.013 ianted Dibenzol 0.212 J <2.5 0.054 JM 0.184 JM 0.10 JM 3.98 35.7 0.032 JM 0.084 JM <2.5 0.138 J 0.062 JM <2.5 0.102 JM 1.71 J 0.104 J 4.98 J 0.212 J <2.5 	 <0.01 furans 0.612 0.078 J 0.136 J 0.382 JM 0.256 JM 9.39 105 0.142 JM 0.108 JM 0.062 JM 0.200 JM 0.172 J <2.5 0.214 J 2.710 0.090 JM 8.68 0.612 J 0.078 J 	<0.12 <0.5 0.302 JM 0.514 JM 1.310 J 0.914 JM 29.30 288 0.164 JM 0.434 J 1.05 J 0.952 J 0.13 J 0.966 J 15.6 0.672 JM 35.2 0.354 J 0.908 J	<0.012 <0.5 <2.5 0.092 J 3.080 0.488 J 24.0 65.8 0.138 JM 0.230 J 0.074 J 0.390 J 0.120 JM 0.546 J 11.2 <2.5 13.7 <2.5 <2.5	<0.012 <0.05 0.462 JM 0.556 JM 3.12 1.26 J 71.1 774 0.236 J 0.412 J 0.972 J 0.668 JM 0.892 J 13.6 0.746 JM 42.7 0.258 J 0.780 J	0.15 0.122 J 0.602 JM 0.652 J 2.11 J 1.43 J 39 373 0.236 J 0.468 J 0.200 J 0.680 J 0.684 JM 0.168 JM 0.736 J 9.240 0.662 J 22.5 0.616 J 0.600 J	4.6	4.6

Table 1 Glenview Fire Area San Bruno, CA

Summary of May 17, 2013 Surface Soil Sampling Results

		1655 Claremont			1690	1701 Earl	981	Background (opposite 850	CA EPA	EPA Region 9
Analyte	Units	Dr		nview Dr	Glenview Dr	Ave	Glenview Dr	Glenview Dr)	-	
Sample I	D	1655	1110	SS-FD	1690	1701	981	SS-BG	CHHSLs ⁽¹⁾	RSLs ⁽²⁾
Total-Hexafurans	pg/g	4.6	1.37 J	3.010	19.4	13.4	17.60	15.8		-
Total-Heptafurans	pg/g	10.4	4.07	6.470	33.9	31.9	43.0	28.6		-
Total TEQ	pg/g	0.841	0.419	1.130	1.91	1.08	3.14	2.52	4.6	4.6
Metals by EPA Method	1 6020									
Antimony	mg/kg	< 0.52	< 0.67	< 0.65	1	< 0.62	1.6	<0.51	30	31
Arsenic	mg/kg	7.5	4.2	5.2	5	5.3	12.0	5.3	0.07 ⁽¹¹⁾	0.39(11)
Barium	mg/kg	93	70	79	88	86	91	66	5,200	15,000
Beryllium	mg/kg	< 0.52	< 0.67	< 0.65	<0.6	< 0.62	< 0.61	<0.51	150	160
Cadmium	mg/kg	<0.26	< 0.34	< 0.33	<0.3	<0.31	0.44	<0.25	1.7	70
Chromium	mg/kg	55	48	61	67	64	57	88	100,000 ⁽¹²⁾	120,000(12)
Cobalt	mg/kg	7.1	4.9	5.8	8.6	7.1	9.3	11	660	23
Copper	mg/kg	11	16	21	27	14	38	24	3,000	3,100
Lead	mg/kg	15	22	23	28	9	30	28	80 ⁽¹³⁾	400
Mercury	mg/kg	0.058	< 0.067	< 0.065	< 0.06	< 0.062	0.09	0.056	18	10
Molybdenum	mg/kg	0.53	< 0.67	< 0.65	<0.6	<0.62	< 0.61	0.57	380	390
Nickel	mg/kg	45	31	41	54	49	53	79	1,600	1,500
Selenium	mg/kg	<0.52	< 0.67	< 0.65	<0.6	<0.62	< 0.61	<0.5	380	390
Silver	mg/kg	<0.52	< 0.67	< 0.65	<0.6	< 0.62	< 0.61	<0.5	380	390
Thallium	mg/kg	<0.52	< 0.67	< 0.65	<0.6	<0.62	< 0.61	<0.5	5	0.78
Vanadium	mg/kg	37	31	35	58	44	44	50	530	390
Zinc	mg/kg	60	59	78	110	49	190	78	23,000	23,000
Asbestos by EPA Meti	hod 600/R-93	3-116, Visual Are	ea Estimation							
Asbestos	%	<1	<1	<1	<1	<1	<1	<1	-	-

Notes:

- 1) California Human Health Screening Levels (CHHSLs) for Residential Soil, California Environmental Protection Agency, January 2005.
- 2) EPA Region 9, Regional Assessment Level (RAL) for Residential Soil (EPA, 2008; revised April, 2012).
- 3) <0.01 = Not detected above sample reporting limit.
- 4) = Not analyzed or not established.
- 5) mg/kg = milligrams per kilogram
- 6) pg/g = picograms per gram = 1 part per trillion or 10⁻⁶ mg/kg.
- 7) 0.063 (bold face type) = detected concentration above sample reporting limit.
- 8) 400 Sample result exceeding screening criteria.
- 9) J = Detection confirmed, estimated concentration below normal method reporting limit.
- 10) JM = Detection confirmed, estimated maximum possible concentration.
- 11) Arsenic concentrations detected exceeds CA EPA CHHSL and EPA Region 9 RSL for Residential Land Use but is within range of normal background concentrations for Bay area soil.
- 12) Criterion based on trivalent Chromium.
- 13) Lead criterion revised September, 2009.
- 14) Total TEQ = Sum of weighted Toxicity Equivalency of dioxin congeners, calculated by analytical laboratory.

FIGURE

geologica

San Francisco, California

Glenview Fire Area San Bruno, California

Figure 1

Site Layout Map with Surface Soil Sampling Locations

Attachment ALaboratory Analytical Testing Report

Analytical Report

Geologica Inc.	Client Project ID: Glenview Sampling	Date Sampled: 05/17/13
5 3rd St # 224		Date Received: 05/20/13
3 314 30 11 22 1	Client Contact: Daniel Matthew	Date Reported: 05/28/13
San Francisco, CA 94103	Client P.O.:	Date Completed: 05/28/13

WorkOrder: 1305623

Amended: July 10, 2013

Dear Daniel:

Enclosed within are:

- 1) The results of the 7 analyzed samples from your project: Glenview Sampling,
- 2) QC data for the above samples, and
- 3) A copy of the chain of custody.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions or concerns, please feel free to give me a call. Thank you for choosing McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

The analytical results relate only to the items tested.

McCampbell Analytical, Inc.

CHAIN	OF CUSTODY RECOR	SD
OUND TIME.	Standard	٦.

		Willow Pass Rd. / Pittsburg, Ca. 94565-1701 nccampbell.com / main@mccampbell.com									10	ECIA	ARC	JUN	D I	LIVER	· K	on	-	24 H	K L	. "	o nk	ч	12	HK [5 DA	IX L	-					
V	www.mcc Telepho										m					Geo	Trac	ker E	DF [PDF	X	EDD		Write	e On	(DW		EQ	uIS			10 D	AY [ב
	relepine	110. (0)	7 202	/20	4/1	un.	1/20	, 20	1	1	0	51	o'	2	3	Eff	luent	San	nple l	Requ	iring	"J"	flag		UST	Clea	ın Uı	p Fur	ıd Pı	roject	· D :	Clai	m#_		_
Report To: Dani	al Matther			-	-	-	Bill '	Tot		1 -					_	-	_		_	_		_		-						_					
Company: Geolo		V 5					ВШ	10;		-		_			-	\vdash								Ana	lysis	Reg	uest					_			
Company: Geoic	. Geologica nic								_	BE		&F)																							
					E-Mail: dmatthews@geologica.net						M		EAB				10																		
Tele: (415) 27	9-2694			E-Mail: dmatthews@geologica.net Fax: ()						or 8260) / MTBE		Grease (1664 / 5520 E/B&F)		<u>_</u>		Вене																			
Project #:					Pro	ject	Nan	ne: (Glen	view	Sar	npl	ing			18.7		4	8.1	802		00		des)			(S)								
Project Location:	San Bru	10				rcha	_	_								8015		99()	141	/092	des	/ SJI	_	bici			P.								
Sampler Signatur													-			1/80		asse	pour	A 95	stici	oclo	ides	Her	3	ő	Hs/	50	(0)						
		SAMI	PLING	П			M	AT	RIX			T		SER		8 (802)		& Gre	rocarl	Y (EP	(CI Pe	s; Ar	Pestic	die Cl	0 (VO	O (SV	0 (PA)	8/60	8 / 602		(8290)				
SAMPLE ID	Location/ Field Point Name	Date	Time	# Containers	Ground Water	Waste Water	Drinking Water	Sea / Water	Soil	Air	Sludge	Other	HCI,	HNO,	Other	BTEX & TPH as Gas	TPH as Diesel (8015)	Total Petroleum Oil &	Total Petroleum Hydrocarbons (418.1)	MTBE / BTEX ONLY (EPA 8260/8021)	EPA 505/ 608 / 8081 (CI Pesticides)	EPA 608 / 8082 PCB's; Aroclors / C	EPA 507 / 8141 (NP Pesticides)	EPA 515/ 8151 (Acidic Cl Herbicides)	EPA 5242 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.8 / 6020)	LUFT 5 Metals (200.8 / 6020)	Metals (200.8 / 6020)	Diordits and Furans (3	Moisture	Asbestos		
23 1655		5/17/	11:30	2					X			П															Х	X			Х	X	X		\Box
S 1110		1/2	12:00						X			П															X	X			X	X	X		\Box
\$\$1690		13	11:40	2					X			П															X	X			X	X	X		
S&1701				2					Х			Н															X	X			X	X	X		
\$3-981			12:30	2					Х			H															X	X			X	X	X		\neg
SS-BG		1/	12:50	2					х			П															X	X			X	X	X		
SS-FD		R	12:10	2					X			H															X	X.			X	X	X		
																											- 1								
		_		-	_			-				Н	-																						\square
		-		+	-	\dashv	\dashv	\dashv	\dashv	\dashv	-	Н	\dashv	-	-	-	-		-	-	-	-	-	-	-	-	-	-	_	-	-	_	\dashv	-	
**MAI clients MUST gloved, open air, samp us to work safely.	disclose any de handling l	dangerou by MAI st	s chemical laff, Non-d	s kno isclos	wn to	be procurs	resent an in	t in th	eir su	ibmit 250 sı	ted s	amp	les in	the cl	entri ient i	ation:	that jeet t	may o full	cause	imm liabil	ediat	e har	m or suf	serio	s fut.	ure h	ealth ou for	enda r you	ngeri r und	nent a	s a re	esult and	of brie	ef, lowin	g
Relinquished By	lb1	1000	Time:	. 4	Recei	ved B	<u>y</u>			2		7	5	G	oop	CON	TION	ION_ BSE	NT_	-						C	OM	MEN	rs:						
telinquished By: Dute: Time: Received By: AP					ECH PPR(LOR	INAT ATE	ED I	N LA			_																							
Relinquished By:	linquished By: Date: Time: Received By:					RESE	ERVA	TIO	VO.	AS	0&0		IETA I<2_	LS	OTE	ER		IAZA	RDO	US:															

McCampbell Analytical, Inc.

CHAIN-OF-CUSTODY RECORD

ClientCode: GISF

WorkOrder: 1305623

Page 1 of 1

1534 Willow Pass Rd (925) 252-9262

Pittsburg, CA 94565-1701

	☐ WaterTrax ☐ WriteOn	EDF	Excel	EQuIS	Email	HardCopy	ThirdParty	☐J-flag
Report to:			Bill	to:		Requ	uested TAT:	5 days
Daniel Matthew	Email:			Accounts Pay	able			
Geologica Inc.	cc:			Geologica Inc	i.			
5 3rd St # 224	PO:			5 3rd St # 224	1	Date	e Received:	05/20/2013
San Francisco, CA 94103 415-279-2694 FAX:	ProjectNo: Glenview Sampli	ng		San Francisco	o, CA 94103	Date	Printed:	05/22/2013

					Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12
1305623-001	1655	Soil	5/17/2013 11:30		Α	Α	Α	Α	Α							
1305623-002	1110	Soil	5/17/2013 12:00		Α	A	Α	Α	A							
1305623-003	1690	Soil	5/17/2013 11:40		Α	Α	Α	Α	Α							
1305623-004	1701	Soil	5/17/2013 12:20		Α	Α	Α	Α	Α							
1305623-005	981	Soil	5/17/2013 12:30		Α	Α	Α	Α	Α							
1305623-006	SS-BG	Soil	5/17/2013 12:50		Α	Α	Α	Α	Α							
1305623-007	SS-FD	Soil	5/17/2013 12:10		Α	Α	Α	Α	Α							

Test Legend:

1	8270D-PNA_S	2	8290_FULL_S		3 ASBESTOS_S	4	CAM17MS_S	5	Moisture_S
6		7]	8	9		10	
11		12		1					

Prepared by: Zoraida Cortez

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

Comments:

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

Sample Receipt Checklist

Client Name:	Geologica inc.					ia ilme Receivea: 5/20	1/2013 8:53:55 PW
Project Name:	Glenview Sampl	ling			LogIn F	Reviewed by:	Zoraida Cortez
WorkOrder N°:	1305623	Matrix: Soil			Carrier:	Rob Pringle (MAI Co	ourier)
		<u>Ch</u>	ain of C	ustody (COC) Informati	<u>on</u>	
Chain of custody	present?		Yes	✓	No 🗌		
Chain of custody	signed when relin	equished and received?	Yes	✓	No 🗌		
Chain of custody	agrees with samp	ole labels?	Yes	✓	No 🗌		
Sample IDs note	d by Client on CO	C?	Yes	✓	No 🗌		
Date and Time of	f collection noted b	by Client on COC?	Yes	✓	No 🗌		
Sampler's name	noted on COC?		Yes	✓	No 🗌		
			Sample	e Receip	t Information		
Custody seals int	tact on shipping co	ontainer/cooler?	Yes		No 🗌	NA [•
Shipping containe	er/cooler in good o	condition?	Yes	✓	No 🗌		
Samples in prope	er containers/bottle	es?	Yes	✓	No 🗌		
Sample containe	rs intact?		Yes	✓	No 🗌		
Sufficient sample	volume for indica	ated test?	Yes	✓	No 🗌		
		Sample Pre	servatio	n and H	old Time (HT) I	<u>nformation</u>	
All samples recei	ived within holding	time?	Yes	✓	No 🗌		
Container/Temp	Blank temperature	e	Coole	er Temp:	5.8°C	NA [
Water - VOA vial	s have zero heads	space / no bubbles?	Yes		No 🗌	No VOA vials submitted [✓
Sample labels ch	necked for correct	preservation?	Yes	✓	No 🗌		
Metal - pH accep	table upon receipt	t (pH<2)?	Yes		No 🗌	NA [✓
Samples Receive	ed on Ice?		Yes	✓	No 🗌		
		(Ice Ty	ype: WE	ET ICE)		
* NOTE: If the "N	la" hay is abaakad	l, see comments below.					

Geologica Inc.	Client Project ID: Glenview Sampling	Date Sampled:	05/17/13
5 3rd St # 224		Date Received:	05/20/13
	Client Contact: Daniel Matthew	Date Extracted:	05/21/13
San Francisco, CA 94103	Client P.O.:	Date Analyzed:	05/21/13-05/23/13

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS

Extraction Method: SW3550B	Aromatic Hydr Ana	alytical Method: SW8270	, 0	on whome by G	Work Order: 1305623						
Lab ID	1305623-001A	1305623-002A	1305623-003A	1305623-004A							
Client ID	1655	1110	1690	1701	Reporting DF						
Matrix	S	S	S	S							
DF	1	1	10	1	S	W					
Compound		Conce	entration		mg/kg ug						
Acenaphthene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Acenaphthylene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Anthracene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Benzo (a) anthracene	ND	ND<0.013	ND<0.12	0.012	0.01	NA					
Benzo (b) fluoranthene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Benzo (k) fluoranthene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Benzo (g,h,i) perylene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Benzo (a) pyrene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Chrysene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Dibenzo (a,h) anthracene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Fluoranthene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Fluorene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Indeno (1,2,3-cd) pyrene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
1-Methylnaphthalene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
2-Methylnaphthalene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Naphthalene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Phenanthrene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
Pyrene	ND	ND<0.013	ND<0.12	ND<0.012	0.01	NA					
	;	Surrogate Recov	veries (%)								
%SS1	95	121	125	112							
%SS2	88	110	118	102							
Comments	i1	i1	a3,i1	i1							

^{*} water samples in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in μ g/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

a3) sample diluted due to high organic content.

i1) results are reported on a dry weight basis

^{#)} surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

Geologica Inc.	Client Project ID: Glenview Sampling	Date Sampled:	05/17/13
5 3rd St # 224		Date Received:	05/20/13
	Client Contact: Daniel Matthew	Date Extracted:	05/21/13
San Francisco, CA 94103	Client P.O.:	Date Analyzed:	05/21/13-05/23/13

Polynuclear Aromatic Hydrocarbons (PAHs / PNAs) using SIM Mode by GC/MS Analytical Method: SW8270C-SIM Extraction Method: SW3550B Work Order: 1305623 Lab ID 1305623-005A 1305623-006A 1305623-007A SS-BG SS-FD Client ID 981 Reporting Limit for DF = 1Matrix S S S W DF 1 2 1 S mg/kg ug/L Compound Concentration Acenaphthene ND<0.012 ND<0.020 ND<0.013 0.01 NA ND<0.012 ND<0.020 ND<0.013 0.01 Acenaphthylene NA ND<0.012 ND<0.020 ND<0.013 0.01 NA Anthracene ND<0.012 ND<0.013 Benzo (a) anthracene 0.064 0.01 NA 0.074 Benzo (b) fluoranthene ND<0.012 ND<0.013 0.01 NA Benzo (k) fluoranthene ND<0.012 0.034 ND<0.013 0.01 NA ND<0.012 0.063 ND<0.013 0.01 NA Benzo (g,h,i) perylene Benzo (a) pyrene ND<0.012 0.061 ND<0.013 0.01 NA Chrysene ND<0.012 0.073 ND<0.013 0.01 NA ND<0.012 ND<0.020 ND<0.013 Dibenzo (a,h) anthracene 0.01 NA Fluoranthene ND<0.012 0.12 ND<0.013 0.01 NA ND<0.012 ND<0.020 ND<0.013 0.01 NA Fluorene Indeno (1,2,3-cd) pyrene ND<0.012 0.051 ND<0.013 0.01 NA ND<0.012 ND<0.020 0.01 1-Methylnaphthalene ND<0.013 NA 2-Methylnaphthalene ND<0.012 ND<0.020 ND<0.013 0.01 NA Naphthalene ND<0.012 ND<0.020 ND<0.013 0.01 NA ND<0.012 0.057 ND<0.013 Phenanthrene 0.01 NA ND<0.012 ND<0.013 0.01 Pyrene 0.15 NA **Surrogate Recoveries (%)** %SS1 105 113 116 94 105 %SS2 106 i1 i1 i1 Comments

* water samples in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are
reported in mg/L.

ND means not detected above the reporting limit/method detection limit; N/A means analyte not applicable to this ND means not detected at or above the reporting limit/method detection limit; N/A means analyte not applicable to this analysis; %SS = Percent Recovery of Surrogate Standard; DF = Dilution Factor

^{#)} surrogate diluted out of range or surrogate coelutes with another peak.; &) low or no surrogate due to matrix interference.

a3) sample diluted due to high organic content.

i1) results are reported on a dry weight basis

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 1655 Lab ID: 1305623-001A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 11:30:00 AM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
1746-01-6	2,3,7,8-TCDD	1	0.0720	0.0228	0.5	J	0.705	1.0011	0.072	pg/g	1	GC36	5/30/13 9:12 PM
40321-76-4	1,2,3,7,8-PeCDD	1	0.144	0.0280	2.5	J	1.608	1.0002	0.144	pg/g	1	GC36	5/30/13 9:12 PM
39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.174	0.0292	2.5	JM	1.455	1.0005	0.0174	pg/g	1	GC36	5/30/13 9:12 PM
57653-85-7	1,2,3,6,7,8-HxCDD	0.1	0.726	0.0342	2.5	J	1.229	1.0005	0.0726	pg/g	1	GC36	5/30/13 9:12 PM
19408-74-3	1,2,3,7,8,9-HxCDD	0.1	0.318	0.0318	2.5	JM	1.012	1.0005	0.0318	pg/g	1	GC36	5/30/13 9:12 PM
35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	13.7	0.0548	2.5		1.053	1.0002	0.137	pg/g	1	GC36	5/30/13 9:12 PM
3268-87-9	OCDD	0.001	120	0.107	5		0.894	1.0001	0.12	pg/g	1	GC36	5/30/13 9:12 PM
51207-31-9	2,3,7,8-TCDF	0.1	0.0480	0.0276	0.5	JM	0.323	1.0008	0.0048	pg/g	1	GC36	5/30/13 9:12 PM
57117-41-6	1,2,3,7,8-PeCDF	0.05	0.0920	0.0310	2.5	J	1.524	1.0008	0.0046	pg/g	1	GC36	5/30/13 9:12 PM
57117-31-4	2,3,4,7,8-PeCDF	0.5	0.206	0.0290	2.5	JM	1.312	1.001	0.103	pg/g	1	GC36	5/30/13 9:12 PM
70648-26-9	1,2,3,4,7,8-HxCDF	0.1	0.298	0.0174	2.5	J	1.216	1.0005	0.0298	pg/g	1	GC36	5/30/13 9:12 PM
57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.170	0.0170	2.5	JM	0.761	1.0005	0.017	pg/g	1	GC36	5/30/13 9:12 PM
72918-21-9	1,2,3,7,8,9-HxCDF	0.1	0.0800	0.0236	2.5	JM	1.945	1.0007	0.008	pg/g	1	GC36	5/30/13 9:12 PM
60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.302	0.0188	2.5	J	1.3	1.0005	0.0302	pg/g	1	GC36	5/30/13 9:12 PM
67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	3.44	0.0318	2.5		1.013	1.0002	0.0344	pg/g	1	GC36	5/30/13 9:12 PM
55673-89-7	1,2,3,4,7,8,9-HpCDF	0.01	0.228	0.0422	2.5	J	1.006	1.0002	0.00228	pg/g	1	GC36	5/30/13 9:12 PM
39001-02-0	OCDF	0.001	11.7	0.0992	5		0.921	1.0056	0.0117	pg/g	1	GC36	5/30/13 9:12 PM
41903-57-5	Total-Tetradioxins		0.0720	0.0228	2.5	J				pg/g	1	GC36	5/30/13 9:12 PM
36088-22-9	Total-Pentadioxins		0.192	0.0280	2.5	J				pg/g	1	GC36	5/30/13 9:12 PM
34465-46-8	Total-Hexadioxins		2.84	0.0292	2.5					pg/g	1	GC36	5/30/13 9:12 PM
37871-00-4	Total-Heptadioxins		22.9	0.0548	2.5					pg/g	1	GC36	5/30/13 9:12 PM
55722-27-5	Total-Tetrafurans		0.394	0.0276	2.5	J				pg/g	1	GC36	5/30/13 9:12 PM
30402-15-4	Total-Pentafurans		2.51	0.0290	2.5					pg/g	1	GC36	5/30/13 9:12 PM
55684-94-1	Total-Hexafurans		4.55	0.0170	2.5					pg/g	1	GC36	5/30/13 9:12 PM
30402-15-4	Total-Heptafurans		10.4	0.0318	2.5					pg/g	1	GC36	5/30/13 9:12 PM
							T	otal TEQ	0.841				
Cleanup S	Standard												
_	37CI-2,3,7,8-TCDD		88	35-197						%REC	1	GC36	5/30/13 9:12 PM
Labeled (Compound Recovery												
	13C-2,3,7,8-TCDD		89	25-164						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,7,8-PeCDD		82	25-181						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,4,7,8-HxCDD		95	32-141						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,6,7,8-HxCDD		74	28-130						%REC	1	GC36	5/30/13 9:12 PM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 1655 Lab ID: 1305623-001A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 11:30:00 AM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		80	23-140						%REC	1	GC36	5/30/13 9:12 PM
	13C-OCDD		56	17-157						%REC	1	GC36	5/30/13 9:12 PM
	13C-2,3,7,8-TCDF		76	24-169						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,7,8-PeCDF		73	24-185						%REC	1	GC36	5/30/13 9:12 PM
	13C-2,3,4,7,8-PeCDF		75	21-178						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,4,7,8-HxCDF		77	26-152						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,6,7,8-HxCDF		69	26-123						%REC	1	GC36	5/30/13 9:12 PM
	13C-2,3,4,6,7,8-HxCDF		75	28-136						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,7,8,9-HxCDF		82	29-147						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,4,6,7,8-HpCDF		61	28-143						%REC	1	GC36	5/30/13 9:12 PM
	13C-1,2,3,4,7,8,9-HpCDF		82	26-138						%REC	1	GC36	5/30/13 9:12 PM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 1110 Lab ID: 1305623-002A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:00:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Lauction	Wieliou.				Duttil	2. 770	.02		•	inary trear	memou	. 5110270	
CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
1746-01-6	2,3,7,8-TCDD	1	0.212	0.0242	0.5	J	0.877	1.0004	0.212	pg/g	1	GC36	5/30/13 10:22 PM
40321-76-4	1,2,3,7,8-PeCDD		ND	0.0236	2.5					pg/g	1	GC36	5/30/13 10:22 PM
39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.0540	0.0234	2.5	JM	1.567	1.0002	0.0054	pg/g	1	GC36	5/30/13 10:22 PM
57653-85-7	1,2,3,6,7,8-HxCDD	0.1	0.184	0.0278	2.5	JM	1.494	1.0005	0.0184	pg/g	1	GC36	5/30/13 10:22 PM
19408-74-3	1,2,3,7,8,9-HxCDD	0.1	0.0960	0.0256	2.5	JM	0.63	1.0005	0.0096	pg/g	1	GC36	5/30/13 10:22 PM
35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	3.98	0.0442	2.5		0.982	1.0004	0.0398	pg/g	1	GC36	5/30/13 10:22 PM
3268-87-9	OCDD	0.001	35.7	0.0914	5		0.892	1.0003	0.0357	pg/g	1	GC36	5/30/13 10:22 PM
51207-31-9	2,3,7,8-TCDF	0.1	0.0320	0.0244	0.5	JM	0.579	1.0015	0.0032	pg/g	1	GC36	5/30/13 10:22 PM
57117-41-6	1,2,3,7,8-PeCDF		ND	0.0212	2.5					pg/g	1	GC36	5/30/13 10:22 PM
57117-31-4	2,3,4,7,8-PeCDF	0.5	0.0840	0.0206	2.5	JM	1.295	1.0005	0.042	pg/g	1	GC36	5/30/13 10:22 PM
70648-26-9	1,2,3,4,7,8-HxCDF	0.1	0.138	0.0124	2.5	J	1.429	1.0002	0.0138	pg/g	1	GC36	5/30/13 10:22 PM
57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.0620	0.0122	2.5	JM	0.753	1.0007	0.0062	pg/g	1	GC36	5/30/13 10:22 PM
72918-21-9	1,2,3,7,8,9-HxCDF		ND	0.0164	2.5					pg/g	1	GC36	5/30/13 10:22 PM
60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.102	0.0136	2.5	JM	0.667	1.0002	0.0102	pg/g	1	GC36	5/30/13 10:22 PM
67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	1.71	0.0318	2.5	J	0.997	1.0002	0.0171	pg/g	1	GC36	5/30/13 10:22 PM
55673-89-7	1,2,3,4,7,8,9-HpCDF	0.01	0.104	0.0448	2.5	J	0.939	1.0006	0.00104	pg/g	1	GC36	5/30/13 10:22 PM
39001-02-0	OCDF	0.001	4.98	0.0774	5	J	0.797	1.0057	0.00498	pg/g	1	GC36	5/30/13 10:22 PM
41903-57-5	Total-Tetradioxins		0.212	0.0242	2.5	J				pg/g	1	GC36	5/30/13 10:22 PM
36088-22-9	Total-Pentadioxins		ND	0.0236	2.5					pg/g	1	GC36	5/30/13 10:22 PM
34465-46-8	Total-Hexadioxins		0.302	0.0234	2.5	J				pg/g	1	GC36	5/30/13 10:22 PM
37871-00-4	Total-Heptadioxins		6.48	0.0442	2.5					pg/g	1	GC36	5/30/13 10:22 PM
55722-27-5	Total-Tetrafurans		0.0720	0.0244	2.5	J				pg/g	1	GC36	5/30/13 10:22 PM
30402-15-4	Total-Pentafurans		0.520	0.0206	2.5	J				pg/g	1	GC36	5/30/13 10:22 PM
55684-94-1	Total-Hexafurans		1.37	0.0122	2.5	J				pg/g	1	GC36	5/30/13 10:22 PM
30402-15-4	Total-Heptafurans		4.07	0.0318	2.5					pg/g	1	GC36	5/30/13 10:22 PM
							Т	otal TEQ	0.419				
Cleanup S	Standard												
•	37CI-2,3,7,8-TCDD		74	35-197						%REC	1	GC36	5/30/13 10:22 PM
Labeled (Compound Recovery												
	13C-2,3,7,8-TCDD		83	25-164						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,7,8-PeCDD		78	25-181						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,4,7,8-HxCDD		92	32-141						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,6,7,8-HxCDD		73	28-130						%REC	1	GC36	5/30/13 10:22 PM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 1110 Lab ID: 1305623-002A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:00:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		79	23-140						%REC	1	GC36	5/30/13 10:22 PM
	13C-OCDD		58	17-157						%REC	1	GC36	5/30/13 10:22 PM
	13C-2,3,7,8-TCDF		73	24-169						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,7,8-PeCDF		68	24-185						%REC	1	GC36	5/30/13 10:22 PM
	13C-2,3,4,7,8-PeCDF		69	21-178						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,4,7,8-HxCDF		75	26-152						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,6,7,8-HxCDF		68	26-123						%REC	1	GC36	5/30/13 10:22 PM
	13C-2,3,4,6,7,8-HxCDF		72	28-136						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,7,8,9-HxCDF		80	29-147						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,4,6,7,8-HpCDF		63	28-143						%REC	1	GC36	5/30/13 10:22 PM
	13C-1,2,3,4,7,8,9-HpCDF		79	26-138						%REC	1	GC36	5/30/13 10:22 PM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 1690 Lab ID: 1305623-003A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 11:40:00 AM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Danaction	memou.				Dutti	2. 770	02		•	mary trear	Trictinou.	. 5110270	
CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
1746-01-6	2,3,7,8-TCDD		ND	0.0448	0.5					pg/g	1	GC36	5/30/13 11:22 PM
40321-76-4	1,2,3,7,8-PeCDD	1	0.302	0.0486	2.5	JM	1.173	1.0007	0.302	pg/g	1	GC36	5/30/13 11:22 PM
39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.514	0.0532	2.5	JM	1.632	1.0002	0.0514	pg/g	1	GC36	5/30/13 11:22 PM
57653-85-7	1,2,3,6,7,8-HxCDD	0.1	1.31	0.0648	2.5	J	1.287	1.0005	0.131	pg/g	1	GC36	5/30/13 11:22 PM
19408-74-3	1,2,3,7,8,9-HxCDD	0.1	0.914	0.0590	2.5	JM	0.986	1.0002	0.0914	pg/g	1	GC36	5/30/13 11:22 PM
35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	29.3	0.126	2.5		1.028	1.0004	0.293	pg/g	1	GC36	5/30/13 11:22 PM
3268-87-9	OCDD	0.001	288	0.429	5		0.885	1.0003	0.288	pg/g	1	GC36	5/30/13 11:22 PM
51207-31-9	2,3,7,8-TCDF	0.1	0.164	0.0484	0.5	JM	0.646	1.0008	0.0164	pg/g	1	GC36	5/30/13 11:22 PM
57117-41-6	1,2,3,7,8-PeCDF	0.05	0.164	0.0644	2.5	J	1.674	1.0005	0.0082	pg/g	1	GC36	5/30/13 11:22 PM
57117-31-4	2,3,4,7,8-PeCDF	0.5	0.434	0.0602	2.5	J	1.642	1.001	0.217	pg/g	1	GC36	5/30/13 11:22 PM
70648-26-9	1,2,3,4,7,8-HxCDF	0.1	1.05	0.0484	2.5	J	1.349	1.0002	0.105	pg/g	1	GC36	5/30/13 11:22 PM
57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.952	0.0482	2.5	J	1.36	1.0005	0.0952	pg/g	1	GC36	5/30/13 11:22 PM
72918-21-9	1,2,3,7,8,9-HxCDF	0.1	0.130	0.0674	2.5	J	1.215	1.0014	0.013	pg/g	1	GC36	5/30/13 11:22 PM
60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.966	0.0500	2.5	J	1.304	1.0002	0.0966	pg/g	1	GC36	5/30/13 11:22 PM
67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	15.6	0.0848	2.5		1.025	1.0004	0.156	pg/g	1	GC36	5/30/13 11:22 PM
55673-89-7	1,2,3,4,7,8,9-HpCDF	0.01	0.672	0.111	2.5	JM	0.573	1.0006	0.00672	pg/g	1	GC36	5/30/13 11:22 PM
39001-02-0	OCDF	0.001	35.2	0.208	5		0.888	1.0057	0.0352	pg/g	1	GC36	5/30/13 11:22 PM
41903-57-5	Total-Tetradioxins		0.354	0.0448	2.5	J				pg/g	1	GC36	5/30/13 11:22 PM
36088-22-9	Total-Pentadioxins		0.908	0.0486	2.5	J				pg/g	1	GC36	5/30/13 11:22 PM
34465-46-8	Total-Hexadioxins		8.42	0.0532	2.5					pg/g	1	GC36	5/30/13 11:22 PM
37871-00-4	Total-Heptadioxins		51.0	0.126	2.5					pg/g	1	GC36	5/30/13 11:22 PM
55722-27-5	Total-Tetrafurans		2.15	0.0484	2.5	J				pg/g	1	GC36	5/30/13 11:22 PM
30402-15-4	Total-Pentafurans		11.1	0.0602	2.5					pg/g	1	GC36	5/30/13 11:22 PM
55684-94-1	Total-Hexafurans		19.4	0.0482	2.5					pg/g	1	GC36	5/30/13 11:22 PM
30402-15-4	Total-Heptafurans		33.9	0.0848	2.5					pg/g	1	GC36	5/30/13 11:22 PM
							Т	otal TEQ	1.91				
Cleanup S	Standard												
_	37CI-2,3,7,8-TCDD		81	35-197						%REC	1	GC36	5/30/13 11:22 PM
Labeled C	Compound Recovery												
	13C-2,3,7,8-TCDD		82	25-164						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,7,8-PeCDD		72	25-181						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,4,7,8-HxCDD		90	32-141						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,6,7,8-HxCDD		72	28-130						%REC	1	GC36	5/30/13 11:22 PM

CLIENT: Geologica Inc. Work Order: 1305623

Client Sample ID: 1690 **Lab ID:** 1305623-003A

Project: Glenview Sampling Matrix: SOIL

Collection Date: 5/17/2013 11:40:00 AM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		73	23-140						%REC	1	GC36	5/30/13 11:22 PM
	13C-OCDD		51	17-157						%REC	1	GC36	5/30/13 11:22 PM
	13C-2,3,7,8-TCDF		72	24-169						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,7,8-PeCDF		65	24-185						%REC	1	GC36	5/30/13 11:22 PM
	13C-2,3,4,7,8-PeCDF		66	21-178						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,4,7,8-HxCDF		74	26-152						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,6,7,8-HxCDF		66	26-123						%REC	1	GC36	5/30/13 11:22 PM
	13C-2,3,4,6,7,8-HxCDF		71	28-136						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,7,8,9-HxCDF		74	29-147						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,4,6,7,8-HpCDF		56	28-143						%REC	1	GC36	5/30/13 11:22 PM
	13C-1,2,3,4,7,8,9-HpCDF		74	26-138						%REC	1	GC36	5/30/13 11:22 PM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 1701 Lab ID: 1305623-004A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:20:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Latituetion	Method.				Dutti	D. 770	.02		•	mary trear	Trictinou.	. 5110270	
CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
1746-01-6	2,3,7,8-TCDD		ND	0.0236	0.5					pg/g	1	GC36	5/31/13 12:23 AM
40321-76-4	1,2,3,7,8-PeCDD		ND	0.0378	2.5					pg/g	1	GC36	5/31/13 12:23 AM
39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.0920	0.0336	2.5	J	1.101	1	0.0092	pg/g	1	GC36	5/31/13 12:23 AM
57653-85-7	1,2,3,6,7,8-HxCDD	0.1	3.08	0.0372	2.5		1.184	1.0005	0.308	pg/g	1	GC36	5/31/13 12:23 AM
19408-74-3	1,2,3,7,8,9-HxCDD	0.1	0.488	0.0356	2.5	J	1.307	1.0005	0.0488	pg/g	1	GC36	5/31/13 12:23 AM
35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	24.0	0.0700	2.5		0.999	1.0004	0.24	pg/g	1	GC36	5/31/13 12:23 AM
3268-87-9	OCDD	0.001	65.8	0.127	5		0.853	1.0003	0.0658	pg/g	1	GC36	5/31/13 12:23 AM
51207-31-9	2,3,7,8-TCDF	0.1	0.138	0.0244	0.5	JM	1.038	1.0004	0.0138	pg/g	1	GC36	5/31/13 12:23 AM
57117-41-6	1,2,3,7,8-PeCDF	0.05	0.0740	0.0202	2.5	J	1.321	1.0008	0.0037	pg/g	1	GC36	5/31/13 12:23 AM
57117-31-4	2,3,4,7,8-PeCDF	0.5	0.230	0.0186	2.5	J	1.336	1.001	0.115	pg/g	1	GC36	5/31/13 12:23 AM
70648-26-9	1,2,3,4,7,8-HxCDF	0.1	0.474	0.0336	2.5	J	1.333	1.0002	0.0474	pg/g	1	GC36	5/31/13 12:23 AM
57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.390	0.0318	2.5	J	1.063	1.0002	0.039	pg/g	1	GC36	5/31/13 12:23 AM
72918-21-9	1,2,3,7,8,9-HxCDF	0.1	0.120	0.0464	2.5	JM	1.014	1.0009	0.012	pg/g	1	GC36	5/31/13 12:23 AM
60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.546	0.0356	2.5	J	1.293	1.0002	0.0546	pg/g	1	GC36	5/31/13 12:23 AM
67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	11.2	0.0508	2.5		0.994	1.0002	0.112	pg/g	1	GC36	5/31/13 12:23 AM
55673-89-7	1,2,3,4,7,8,9-HpCDF		ND	0.0648	2.5					pg/g	1	GC36	5/31/13 12:23 AM
39001-02-0	OCDF	0.001	13.7	0.122	5		0.888	1.0056	0.0137	pg/g	1	GC36	5/31/13 12:23 AM
41903-57-5	Total-Tetradioxins		ND	0.0236	2.5					pg/g	1	GC36	5/31/13 12:23 AM
36088-22-9	Total-Pentadioxins		ND	0.0378	2.5					pg/g	1	GC36	5/31/13 12:23 AM
34465-46-8	Total-Hexadioxins		21.9	0.0336	2.5					pg/g	1	GC36	5/31/13 12:23 AM
37871-00-4	Total-Heptadioxins		48.1	0.0700	2.5					pg/g	1	GC36	5/31/13 12:23 AM
55722-27-5	Total-Tetrafurans		1.69	0.0244	2.5	J				pg/g	1	GC36	5/31/13 12:23 AM
30402-15-4	Total-Pentafurans		5.38	0.0186	2.5					pg/g	1	GC36	5/31/13 12:23 AM
55684-94-1	Total-Hexafurans		13.4	0.0318	2.5					pg/g	1	GC36	5/31/13 12:23 AM
30402-15-4	Total-Heptafurans		31.9	0.0508	2.5					pg/g	1	GC36	5/31/13 12:23 AM
							Т	otal TEQ	1.08				
Cleanup S	Standard												
•	37CI-2,3,7,8-TCDD		85	35-197						%REC	1	GC36	5/31/13 12:23 AM
Labeled (Compound Recovery												
	13C-2,3,7,8-TCDD		85	25-164						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,7,8-PeCDD		79	25-181						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,4,7,8-HxCDD		91	32-141						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,6,7,8-HxCDD		73	28-130						%REC	1	GC36	5/31/13 12:23 AM

CLIENT: Geologica Inc. Work Order: 1305623

Client Sample ID: 1701 **Lab ID:** 1305623-004A

Project: Glenview Sampling Matrix: SOIL

Collection Date: 5/17/2013 12:20:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		75	23-140						%REC	1	GC36	5/31/13 12:23 AM
	13C-OCDD		45	17-157						%REC	1	GC36	5/31/13 12:23 AM
	13C-2,3,7,8-TCDF		74	24-169						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,7,8-PeCDF		70	24-185						%REC	1	GC36	5/31/13 12:23 AM
	13C-2,3,4,7,8-PeCDF		71	21-178						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,4,7,8-HxCDF		74	26-152						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,6,7,8-HxCDF		67	26-123						%REC	1	GC36	5/31/13 12:23 AM
	13C-2,3,4,6,7,8-HxCDF		72	28-136						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,7,8,9-HxCDF		77	29-147						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,4,6,7,8-HpCDF		54	28-143						%REC	1	GC36	5/31/13 12:23 AM
	13C-1,2,3,4,7,8,9-HpCDF		77	26-138						%REC	1	GC36	5/31/13 12:23 AM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: 981 Lab ID: 1305623-005A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:30:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

	Method.					D. 770	-		= :	india j		5 110290	
CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
1746-01-6	2,3,7,8-TCDD		ND	0.0228	0.5					pg/g	1	GC36	5/31/13 1:25 AM
40321-76-4	1,2,3,7,8-PeCDD	1	0.462	0.0188	2.5	JM	1.241	1.0005	0.462	pg/g	1	GC36	5/31/13 1:25 AM
39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.556	0.0304	2.5	JM	1.042	1.0005	0.0556	pg/g	1	GC36	5/31/13 1:25 AM
57653-85-7	1,2,3,6,7,8-HxCDD	0.1	3.12	0.0346	2.5		1.204	1.0005	0.312	pg/g	1	GC36	5/31/13 1:25 AM
19408-74-3	1,2,3,7,8,9-HxCDD	0.1	1.26	0.0326	2.5	J	1.057	1.0005	0.126	pg/g	1	GC36	5/31/13 1:25 AM
35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	71.1	0.0980	2.5		1.011	1.0002	0.711	pg/g	1	GC36	5/31/13 1:25 AM
3268-87-9	OCDD	0.001	774	0.194	5		0.865	1.0004	0.774	pg/g	1	GC36	5/31/13 1:25 AM
51207-31-9	2,3,7,8-TCDF	0.1	0.236	0.0356	0.5	J	0.778	1.0004	0.0236	pg/g	1	GC36	5/31/13 1:25 AM
57117-41-6	1,2,3,7,8-PeCDF	0.05	0.162	0.0222	2.5	J	1.523	1.0005	0.0081	pg/g	1	GC36	5/31/13 1:25 AM
57117-31-4	2,3,4,7,8-PeCDF	0.5	0.412	0.0206	2.5	J	1.328	1.0007	0.206	pg/g	1	GC36	5/31/13 1:25 AM
70648-26-9	1,2,3,4,7,8-HxCDF	0.1	0.972	0.0254	2.5	J	1.088	1.0002	0.0972	pg/g	1	GC36	5/31/13 1:25 AM
57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.668	0.0246	2.5	JM	1.435	1.0005	0.0668	pg/g	1	GC36	5/31/13 1:25 AM
72918-21-9	1,2,3,7,8,9-HxCDF	0.1	0.196	0.0354	2.5	JM	0.756	1.0011	0.0196	pg/g	1	GC36	5/31/13 1:25 AM
60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.892	0.0278	2.5	J	1.156	1.0002	0.0892	pg/g	1	GC36	5/31/13 1:25 AM
67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	13.6	0.0346	2.5		0.994	1.0002	0.136	pg/g	1	GC36	5/31/13 1:25 AM
55673-89-7	1,2,3,4,7,8,9-HpCDF	0.01	0.746	0.0448	2.5	JM	2.025	1.0002	0.00746	pg/g	1	GC36	5/31/13 1:25 AM
39001-02-0	OCDF	0.001	42.7	0.0976	5		0.887	1.0057	0.0427	pg/g	1	GC36	5/31/13 1:25 AM
41903-57-5	Total-Tetradioxins		0.258	0.0228	2.5	J				pg/g	1	GC36	5/31/13 1:25 AM
36088-22-9	Total-Pentadioxins		0.780	0.0188	2.5	J				pg/g	1	GC36	5/31/13 1:25 AM
34465-46-8	Total-Hexadioxins		14.3	0.0304	2.5					pg/g	1	GC36	5/31/13 1:25 AM
37871-00-4	Total-Heptadioxins		119	0.0980	2.5					pg/g	1	GC36	5/31/13 1:25 AM
55722-27-5	Total-Tetrafurans		2.62	0.0356	2.5					pg/g	1	GC36	5/31/13 1:25 AM
30402-15-4	Total-Pentafurans		7.91	0.0206	2.5					pg/g	1	GC36	5/31/13 1:25 AM
55684-94-1	Total-Hexafurans		17.6	0.0246	2.5					pg/g	1	GC36	5/31/13 1:25 AM
30402-15-4	Total-Heptafurans		43.0	0.0346	2.5					pg/g	1	GC36	5/31/13 1:25 AM
							To	otal TEQ	3.14				
Cleanup S	Standard												
•	37CI-2,3,7,8-TCDD		90	35-197						%REC	1	GC36	5/31/13 1:25 AM
Labeled C	Compound Recovery												
	13C-2,3,7,8-TCDD		93	25-164						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,7,8-PeCDD		83	25-181						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,4,7,8-HxCDD		89	32-141						%REC	1	GC36	5/31/13 1:25 AM

CLIENT: Geologica Inc. Work Order: 1305623

Client Sample ID: 981 **Lab ID:** 1305623-005A

Project: Glenview Sampling Matrix: SOIL

Collection Date: 5/17/2013 12:30:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		74	23-140						%REC	1	GC36	5/31/13 1:25 AM
	13C-OCDD		51	17-157						%REC	1	GC36	5/31/13 1:25 AM
	13C-2,3,7,8-TCDF		77	24-169						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,7,8-PeCDF		73	24-185						%REC	1	GC36	5/31/13 1:25 AM
	13C-2,3,4,7,8-PeCDF		74	21-178						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,4,7,8-HxCDF		74	26-152						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,6,7,8-HxCDF		65	26-123						%REC	1	GC36	5/31/13 1:25 AM
	13C-2,3,4,6,7,8-HxCDF		70	28-136						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,7,8,9-HxCDF		76	29-147						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,4,6,7,8-HpCDF		58	28-143						%REC	1	GC36	5/31/13 1:25 AM
	13C-1,2,3,4,7,8,9-HpCDF		77	26-138						%REC	1	GC36	5/31/13 1:25 AM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: SS-BG Lab ID: 1305623-006A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:50:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

46-01-6 2,3,7,8-TCDD 1 0.122 0.0194 0.5 J 0.824 1.0004 0.122 pg/g 1 GC36 5/31/13 2:26 AM 321-76-4 1,2,3,7,8-PCDD 1 0.662 0.0252 2.5 JM 1.294 1.0002 0.662 pg/g 1 GC36 5/31/13 2:26 AM 653-95-7 1,2,3,4,7,8-HxCDD 0.1 0.652 0.0310 2.5 J 1.21 1.0002 0.6652 pg/g 1 GC36 5/31/13 2:26 AM 408-74-3 1,2,3,7,8-PKCDD 0.1 1.43 0.0340 2.5 J 1.215 1.0002 0.211 pg/g 1 GC36 5/31/13 2:26 AM 408-74-3 1,2,3,7,8-PKCDD 0.1 1.43 0.0340 2.5 J 1.202 1.0005 0.143 pg/g 1 GC36 5/31/13 2:26 AM 408-74-3 1,2,3,7,8-PKCDD 0.01 39.0 0.0822 2.5 J 1.036 1.0004 0.39 pg/g 1 GC36 5/31/13 2:26 AM 68-87-9 OCDD 0.001 373 0.187 5 0.872 1.0003 0.373 pg/g 1 GC36 5/31/13 2:26 AM 68-87-9 OCDD 0.001 373 0.187 5 0.872 1.0003 0.373 pg/g 1 GC36 5/31/13 2:26 AM 117-41-6 1,2,3,7,8-PECDF 0.1 0.236 0.0184 0.5 J 0.809 1.0008 0.0236 pg/g 1 GC36 5/31/13 2:26 AM 117-41-6 1,2,3,7,8-PECDF 0.5 0.468 0.0260 2.5 J 1.494 1.0003 0.01 pg/g 1 GC36 5/31/13 2:26 AM 117-41-4 2,3,4,7,8-PECDF 0.5 0.468 0.0260 2.5 J 1.497 1.0007 0.234 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,6,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,7,8,9-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,7,8,9-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.193 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.680 0.0188 2.5 J 1.193 1.0002 0.068 pg/g 1 GC36 5/31/13 2:26 AM 117-44-9 1,2,3,4,7,8-HxCDF 0.1 0.662 0.0596 2.5 J 1.006 0.093 1.0004 0.0924 pg/g 1 GC36 5/31/13 2:26 AM 001-02-0 0.0064 0.0064 0.00662 pg/g 1 GC36 5/31/13 2:26 AM 001-02-0														
1	CAS#	Analytes	TEF	Result	EDL	RL	Qual		RRT	TEQ	Units	DF		DateAnalyzed
227-28-6 1,2,3,4,7,8-HxCDD	1746-01-6	2,3,7,8-TCDD	1	0.122	0.0194	0.5	J	0.824	1.0004	0.122	pg/g	1	GC36	5/31/13 2:26 AM
653-85-7 1,2,3,6,7,8-HxCDD	40321-76-4	1,2,3,7,8-PeCDD	1	0.602	0.0252	2.5	JM	1.294	1.0002	0.602	pg/g	1	GC36	5/31/13 2:26 AM
408-74-3 1,2,3,7,8,9+hxCDD 0.1 1.43 0.0340 2.5 J 1.202 1.0005 0.143 pg/g 1 GC36 5/31/13 226 AM 822-46-9 1,2,3,4,6,7,8+hyCDD 0.01 39.0 0.0822 2.5 J 1.036 1.0004 0.39 pg/g 1 GC36 5/31/13 2.26 AM 827-49 OCDD 0.001 373 0.187 5 0.872 1.0003 0.373 pg/g 1 GC36 5/31/13 2.26 AM 8207-31-9 2,3,7,8-TCDF 0.1 0.236 0.0184 0.5 J 0.809 1.0008 0.0236 pg/g 1 GC36 5/31/13 2.26 AM 1177-41-6 1.2,3,7,8-PeCDF 0.5 0.488 0.0260 2.5 J 1.494 1.0003 0.01 pg/g 1 GC36 5/31/13 2.26 AM 1177-41-6 1.2,3,7,8-PeCDF 0.5 0.488 0.0260 2.5 J 1.497 1.0007 0.234 pg/g 1 GC36 5/31/13 2.26 AM 1177-41-9 1,2,3,6,7,8-hxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 1177-41-9 1,2,3,6,7,8-hxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 1177-41-9 1,2,3,6,7,8-hxCDF 0.1 0.680 0.0244 2.5 JM 1.488 1.0002 0.0624 pg/g 1 GC36 5/31/13 2.26 AM 1177-41-9 1,2,3,6,7,8-hxCDF 0.1 0.188 0.0244 2.5 JM 2.277 1.0011 0.0168 pg/g 1 GC36 5/31/13 2.26 AM 1187-41-9 1,2,3,4,7,8-hyCDF 0.1 0.736 0.0198 2.5 J 1.36 1.0005 0.0736 pg/g 1 GC36 5/31/13 2.26 AM 1187-41-9 1,2,3,4,7,8-hyCDF 0.1 0.736 0.0198 2.5 J 1.36 1.0005 0.0736 pg/g 1 GC36 5/31/13 2.26 AM 1187-41-9 1,2,3,4,7,8-hyCDF 0.1 0.562 0.0596 2.5 J 1.095 1.0004 0.0924 pg/g 1 GC36 5/31/13 2.26 AM 1187-41-9 1.0005 0.0005	39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.652	0.0310	2.5	J	1.21	1.0002	0.0652	pg/g	1	GC36	5/31/13 2:26 AM
822-46-9 1,2,3,4,6,7,8-HpCDD 0.01 39.0 0.0822 2.5 1.036 1.0004 0.39 pg/g 1 GC36 5/31/13 2.26 AM 68-87-9 OCDD 0.001 373 0.187 5 0.872 1.0003 0.373 pg/g 1 GC36 5/31/13 2.26 AM 207-31-9 2,3,7,8-TCDF 0.1 0.236 0.0184 0.5 J 0.809 1.0008 0.0236 pg/g 1 GC36 5/31/13 2.26 AM 207-31-9 2,3,7,8-PcDF 0.5 0.200 0.0272 2.5 J 1.494 1.0003 0.01 pg/g 1 GC36 5/31/13 2.26 AM 11/7-31-4 2,3,4,7,8-PcDF 0.5 0.468 0.0260 2.5 J 1.494 1.0003 0.01 pg/g 1 GC36 5/31/13 2.26 AM 648-26-9 1,2,3,4,7,8-HcCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 648-26-9 1,2,3,4,7,8-HcCDF 0.1 0.684 0.0260 2.5 JM 1.488 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 918-21-9 1,2,3,7,8-HcCDF 0.1 0.682 0.0188 2.5 JM 1.488 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 918-21-9 1,2,3,7,8-HcCDF 0.1 0.682 0.0188 2.5 JM 1.488 1.0002 0.0684 pg/g 1 GC36 5/31/13 2.26 AM 918-21-9 1,2,3,7,8-HcCDF 0.1 0.168 0.0244 2.5 JM 2.277 1.0011 0.0168 pg/g 1 GC36 5/31/13 2.26 AM 918-21-9 1,2,3,7,8-HpCDF 0.1 0.168 0.0244 2.5 JM 2.277 1.0011 0.0168 pg/g 1 GC36 5/31/13 2.26 AM 918-21-9 1,2,3,4,7,8-HpCDF 0.01 0.662 0.0596 2.5 J 1.36 1.0005 0.0736 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Heptadioxins 0.600 0.0962 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-H	57653-85-7	1,2,3,6,7,8-HxCDD	0.1	2.11	0.0370	2.5	J	1.215	1.0002	0.211	pg/g	1	GC36	5/31/13 2:26 AM
88-87-9 OCDD 0.001 373 0.187 5 0.872 1.0003 0.373 pg/g 1 GC36 5/31/13 2.26 AM 207-31-9 2.3,7.8-TCDF 0.1 0.236 0.0184 0.5 J 0.809 1.0008 0.0236 pg/g 1 GC36 5/31/13 2.26 AM 117-41-6 1.2,3.7,8-PeCDF 0.5 0.200 0.0272 2.5 J 1.494 1.0003 0.01 pg/g 1 GC36 5/31/13 2.26 AM 117-41-4 2.3,4.7,8-PeCDF 0.5 0.468 0.0260 2.5 J 1.497 1.0007 0.234 pg/g 1 GC36 5/31/13 2.26 AM 117-41-9 1.2,3.6,7.8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 117-41-9 1.2,3.6,7.8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.068 pg/g 1 GC36 5/31/13 2.26 AM 117-41-9 1.2,3.6,7.8-HxCDF 0.1 0.680 0.0188 2.5 J 1.192 1.0002 0.0684 pg/g 1 GC36 5/31/13 2.26 AM 117-41-9 1.2,3.6,7.8-HxCDF 0.1 0.680 0.0188 0.0244 2.5 JM 2.277 1.0011 0.0168 pg/g 1 GC36 5/31/13 2.26 AM 861-34-5 2.3,4.6,7.8-HxCDF 0.1 0.168 0.0244 2.5 JM 2.277 1.0011 0.0168 pg/g 1 GC36 5/31/13 2.26 AM 861-34-5 2.3,4.6,7.8-HxCDF 0.1 0.736 0.0198 2.5 J 1.036 1.0005 0.0736 pg/g 1 GC36 5/31/13 2.26 AM 562-39-4 1.2,3.4,6.7,8-HxCDF 0.01 0.662 0.0596 2.5 J 1.033 1.0004 0.0924 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.600 0.0252 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.600 0.0252 2.5 J 1.0004 0.00662 pg/g 1 GC36 5/31/13 2.26 AM 903-57-5 Total-Tetradioxins 0.500 0.	19408-74-3	1,2,3,7,8,9-HxCDD	0.1	1.43	0.0340	2.5	J	1.202	1.0005	0.143	pg/g	1	GC36	5/31/13 2:26 AM
207-31-9	35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	39.0	0.0822	2.5		1.036	1.0004	0.39	pg/g	1	GC36	5/31/13 2:26 AM
117-41-6	3268-87-9	OCDD	0.001	373	0.187	5		0.872	1.0003	0.373	pg/g	1	GC36	5/31/13 2:26 AM
117-31-4	51207-31-9	2,3,7,8-TCDF	0.1	0.236	0.0184	0.5	J	0.809	1.0008	0.0236	pg/g	1	GC36	5/31/13 2:26 AM
848-26-9 1,2,3,4,7,8-HxCDF	57117-41-6	1,2,3,7,8-PeCDF	0.05	0.200	0.0272	2.5	J	1.494	1.0003	0.01	pg/g	1	GC36	5/31/13 2:26 AM
117-44-9 1,2,3,6,7,8-HxCDF	57117-31-4	2,3,4,7,8-PeCDF	0.5	0.468	0.0260	2.5	J	1.497	1.0007	0.234	pg/g	1	GC36	5/31/13 2:26 AM
918-21-9 1,2,3,7,8,9-HxCDF	70648-26-9	1,2,3,4,7,8-HxCDF	0.1	0.680	0.0188	2.5	J	1.192	1.0002	0.068	pg/g	1	GC36	5/31/13 2:26 AM
881-34-5	57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.624	0.0180	2.5	JM	1.488	1.0002	0.0624	pg/g	1	GC36	5/31/13 2:26 AM
562-39-4 1,2,3,4,6,7,8-HpCDF 0.01 9.24 0.0484 2.5 1.033 1.0004 0.0924 pg/g 1 GC36 5/31/13 2:26 AM 673-89-7 1,2,3,4,7,8,9-HpCDF 0.01 0.662 0.0596 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2:26 AM 001-02-0 OCDF 0.001 22.5 0.105 5 0.893 1.0057 0.0225 pg/g 1 GC36 5/31/13 2:26 AM 001-02-0 OCDF 0.001 22.5 0.105 5 0.893 1.0057 0.0225 pg/g 1 GC36 5/31/13 2:26 AM 008-22-9 Total-Pentadioxins 0.616 0.0194 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 088-22-9 Total-Pentadioxins 0.600 0.0252 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 088-22-9 Total-Heptadioxins 11.1 0.0310 2.5 pg/g 1 GC36 5/31/13 2:26 AM 0871-00-4 Total-Heptadioxins 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 001-15-4 Total-Heptadivrans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptadivrans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 002-15-4 Total-Heptad	72918-21-9	1,2,3,7,8,9-HxCDF	0.1	0.168	0.0244	2.5	JM	2.277	1.0011	0.0168	pg/g	1	GC36	5/31/13 2:26 AM
673-89-7 1,2,3,4,7,8,9-HpCDF 0.01 0.662 0.0596 2.5 J 1.096 1.0004 0.00662 pg/g 1 GC36 5/31/13 2:26 AM 001-02-0 CCDF 0.001 22.5 0.105 5 0.893 1.0057 0.0225 pg/g 1 GC36 5/31/13 2:26 AM 903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 088-22-9 Total-Pentadioxins 0.600 0.0252 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 465-46-8 Total-Hexadioxins 11.1 0.0310 2.5 pg/g 1 GC36 5/31/13 2:26 AM 871-00-4 Total-Heptadioxins 67.0 0.0822 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Pentafurans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.7 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.8 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.8 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 pg/g 1 GC36	60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.736	0.0198	2.5	J	1.36	1.0005	0.0736	pg/g	1	GC36	5/31/13 2:26 AM
001-02-0 OCDF	67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	9.24	0.0484	2.5		1.033	1.0004	0.0924	pg/g	1	GC36	5/31/13 2:26 AM
001-02-0 OCDF	55673-89-7	1,2,3,4,7,8,9-HpCDF	0.01	0.662	0.0596	2.5	J	1.096	1.0004	0.00662	pg/g	1	GC36	5/31/13 2:26 AM
903-57-5 Total-Tetradioxins 0.616 0.0194 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 088-22-9 Total-Pentadioxins 0.600 0.0252 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 465-46-8 Total-Hexadioxins 11.1 0.0310 2.5 pg/g 1 GC36 5/31/13 2:26 AM 871-00-4 Total-Heptadioxins 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Pentafurans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.6 0.0484 2.5 pg/g 1	39001-02-0	OCDF	0.001	22.5	0.105	5		0.893	1.0057	0.0225		1	GC36	5/31/13 2:26 AM
088-22-9 Total-Pentadioxins 0.600 0.0252 2.5 J pg/g 1 GC36 5/31/13 2:26 AM 465-46-8 Total-Hexadioxins 11.1 0.0310 2.5 pg/g 1 GC36 5/31/13 2:26 AM 871-00-4 Total-Heptadioxins 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 9g/g 1 GC36 5/31/13 2:26 AM 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 684-94-1 Total-Pentafurans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 684-94-1 Total-Heptafurans 2.5 pg/g 1 GC36 5/31/13 2:26 AM 684-94-1 Total-Heptafurans 8 35-197 %REC 1 GC36 5/31/13 2:26	41903-57-5	Total-Tetradioxins		0.616	0.0194	2.5	J					1	GC36	5/31/13 2:26 AM
465-46-8 Total-Hexadioxins 11.1 0.0310 2.5 pg/g 1 GC36 5/31/13 2:26 AM 871-00-4 Total-Heptadioxins 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 722-27-5 Total-Tetrafurans 3.08 0.0184 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Pentafurans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.3 35-197 Total TEQ 2.52 **Reanup Standard** 37Cl-2,3,7,8-TCDD 83 35-197 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 48.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 49.4 25-164 %REC 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexaf	36088-22-9	Total-Pentadioxins		0.600	0.0252	2.5	J					1	GC36	5/31/13 2:26 AM
871-00-4 Total-Heptadioxins 67.0 0.0822 2.5 pg/g 1 GC36 5/31/13 2:26 AM 722-27-5 Total-Tetrafurans 3.08 0.0184 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Pentafurans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Hexafurans 15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 Total TEQ 2.52 Leanup Standard	34465-46-8	Total-Hexadioxins		11.1	0.0310	2.5						1	GC36	5/31/13 2:26 AM
402-15-4 Total-Pentafurans 9.48 0.0260 2.5 pg/g 1 GC36 5/31/13 2:26 AM 684-94-1 Total-Hexafurans 15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 70tal-Heptafurans 70tal-TEQ 2.52 **Total TEQ 2.52** **Total TEQ 2.52** **Rec 1 GC36 5/31/13 2:26 AM 684-94-1 Total-Heptafurans 6.5 fg/g 1 GC36 5/31/13 2:26 AM 684-94-1 Total-Heptafurans 70tal-Heptafurans 70tal-H	37871-00-4	Total-Heptadioxins		67.0	0.0822	2.5					pg/g	1	GC36	5/31/13 2:26 AM
15.8 0.0180 2.5 pg/g 1 GC36 5/31/13 2:26 AM 402-15-4 Total-Heptafurans 28.6 0.0484 2.5 pg/g 1 GC36 5/31/13 2:26 AM 2.5 pg/g 1 pg/g	55722-27-5	Total-Tetrafurans		3.08	0.0184	2.5						1	GC36	5/31/13 2:26 AM
Add Total Heptafurans 28.6 0.0484 2.5 Pg/g 1 GC36 5/31/13 2:26 AM	30402-15-4	Total-Pentafurans		9.48	0.0260	2.5					pg/g	1	GC36	5/31/13 2:26 AM
Total TEQ 2.52 Seanup Standard	55684-94-1	Total-Hexafurans		15.8	0.0180	2.5					pg/g	1	GC36	5/31/13 2:26 AM
leanup Standard 37CI-2,3,7,8-TCDD 83 35-197 %REC 1 GC36 5/31/13 2:26 AM abeled Compound Recovery 13C-2,3,7,8-TCDD 84 25-164 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,7,8-PeCDD 80 25-181 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,4,7,8-HxCDD 88 32-141 %REC 1 GC36 5/31/13 2:26 AM	30402-15-4	Total-Heptafurans		28.6	0.0484	2.5					pg/g	1	GC36	5/31/13 2:26 AM
37CI-2,3,7,8-TCDD 83 35-197 %REC 1 GC36 5/31/13 2:26 AM abeled Compound Recovery 13C-2,3,7,8-TCDD 84 25-164 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,7,8-PeCDD 80 25-181 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,4,7,8-HxCDD 88 32-141 %REC 1 GC36 5/31/13 2:26 AM								Te	otal TEQ	2.52				
37CI-2,3,7,8-TCDD 83 35-197 %REC 1 GC36 5/31/13 2:26 AM abeled Compound Recovery 13C-2,3,7,8-TCDD 84 25-164 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,7,8-PeCDD 80 25-181 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,4,7,8-HxCDD 88 32-141 %REC 1 GC36 5/31/13 2:26 AM	Cleanup S	Standard												
13C-2,3,7,8-TCDD 84 25-164 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,7,8-PeCDD 80 25-181 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,4,7,8-HxCDD 88 32-141 %REC 1 GC36 5/31/13 2:26 AM				83	35-197						%REC	1	GC36	5/31/13 2:26 AM
13C-1,2,3,7,8-PeCDD 80 25-181 %REC 1 GC36 5/31/13 2:26 AM 13C-1,2,3,4,7,8-HxCDD 88 32-141 %REC 1 GC36 5/31/13 2:26 AM	Labeled C	Compound Recovery												
13C-1,2,3,4,7,8-HxCDD 88 32-141 %REC 1 GC36 5/31/13 2:26 AM		13C-2,3,7,8-TCDD		84	25-164						%REC	1	GC36	5/31/13 2:26 AM
		13C-1,2,3,7,8-PeCDD		80	25-181						%REC	1	GC36	5/31/13 2:26 AM
13C-1,2,3,6,7,8-HxCDD 72 28-130 %REC 1 GC36 5/31/13 2:26 AM		13C-1,2,3,4,7,8-HxCDD		88	32-141						%REC	1	GC36	5/31/13 2:26 AM
		13C-1,2,3,6,7,8-HxCDD		72	28-130						%REC	1	GC36	5/31/13 2:26 AM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: SS-BG Lab ID: 1305623-006A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:50:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		77	23-140						%REC	1	GC36	5/31/13 2:26 AM
	13C-OCDD		54	17-157						%REC	1	GC36	5/31/13 2:26 AM
	13C-2,3,7,8-TCDF		72	24-169						%REC	1	GC36	5/31/13 2:26 AM
	13C-1,2,3,7,8-PeCDF		71	24-185						%REC	1	GC36	5/31/13 2:26 AM
	13C-2,3,4,7,8-PeCDF		72	21-178						%REC	1	GC36	5/31/13 2:26 AM
	13C-1,2,3,4,7,8-HxCDF		73	26-152						%REC	1	GC36	5/31/13 2:26 AM
	13C-1,2,3,6,7,8-HxCDF		65	26-123						%REC	1	GC36	5/31/13 2:26 AM
	13C-2,3,4,6,7,8-HxCDF		71	28-136						%REC	1	GC36	5/31/13 2:26 AM
	13C-1,2,3,7,8,9-HxCDF		76	29-147						%REC	1	GC36	5/31/13 2:26 AM
	13C-1,2,3,4,6,7,8-HpCDF		59	28-143						%REC	1	GC36	5/31/13 2:26 AM
	13C-1,2,3,4,7,8,9-HpCDF		80	26-138						%REC	1	GC36	5/31/13 2:26 AM

CLIENT: Geologica Inc. **Work Order:** 1305623

Client Sample ID: SS-FD Lab ID: 1305623-007A

Project: Matrix: Glenview Sampling **SOIL**

Collection Date: 5/17/2013 12:10:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Laudion	Wieliou.				Dutti	2. 770	02		•	inary trear	miculou.	5110270	
CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
1746-01-6	2,3,7,8-TCDD	1	0.612	0.0338	0.5		0.694	1.0004	0.612	pg/g	1	GC36	5/30/13 6:08 PM
40321-76-4	1,2,3,7,8-PeCDD	1	0.0780	0.0374	2.5	J	1.618	1.0005	0.078	pg/g	1	GC36	5/30/13 6:08 PM
39227-28-6	1,2,3,4,7,8-HxCDD	0.1	0.136	0.0238	2.5	J	1.144	1.0005	0.0136	pg/g	1	GC36	5/30/13 6:08 PM
57653-85-7	1,2,3,6,7,8-HxCDD	0.1	0.382	0.0292	2.5	JM	0.972	1.0005	0.0382	pg/g	1	GC36	5/30/13 6:08 PM
19408-74-3	1,2,3,7,8,9-HxCDD	0.1	0.256	0.0264	2.5	JM	1.527	1.0005	0.0256	pg/g	1	GC36	5/30/13 6:08 PM
35822-46-9	1,2,3,4,6,7,8-HpCDD	0.01	9.39	0.0614	2.5		0.976	1.0004	0.0939	pg/g	1	GC36	5/30/13 6:08 PM
3268-87-9	OCDD	0.001	105	0.155	5		0.881	1.0004	0.105	pg/g	1	GC36	5/30/13 6:08 PM
51207-31-9	2,3,7,8-TCDF	0.1	0.142	0.0370	0.5	JM	1.253	1.0012	0.0142	pg/g	1	GC36	5/30/13 6:08 PM
57117-41-6	1,2,3,7,8-PeCDF	0.05	0.0620	0.0328	2.5	JM	0.563	1.0005	0.0031	pg/g	1	GC36	5/30/13 6:08 PM
57117-31-4	2,3,4,7,8-PeCDF	0.5	0.108	0.0320	2.5	JM	2.001	1.0005	0.054	pg/g	1	GC36	5/30/13 6:08 PM
70648-26-9	1,2,3,4,7,8-HxCDF	0.1	0.200	0.0224	2.5	JM	1.466	1.0002	0.02	pg/g	1	GC36	5/30/13 6:08 PM
57117-44-9	1,2,3,6,7,8-HxCDF	0.1	0.172	0.0214	2.5	J	1.267	1.0005	0.0172	pg/g	1	GC36	5/30/13 6:08 PM
72918-21-9	1,2,3,7,8,9-HxCDF		ND	0.0304	2.5					pg/g	1	GC36	5/30/13 6:08 PM
60851-34-5	2,3,4,6,7,8-HxCDF	0.1	0.214	0.0242	2.5	J	1.219	1.0002	0.0214	pg/g	1	GC36	5/30/13 6:08 PM
67562-39-4	1,2,3,4,6,7,8-HpCDF	0.01	2.71	0.0462	2.5		0.926	1.0004	0.0271	pg/g	1	GC36	5/30/13 6:08 PM
55673-89-7	1,2,3,4,7,8,9-HpCDF	0.01	0.0900	0.0554	2.5	JM	1.23	1.0004	0.0009	pg/g	1	GC36	5/30/13 6:08 PM
39001-02-0	OCDF	0.001	8.68	0.156	5		0.868	1.0059	0.00868	pg/g	1	GC36	5/30/13 6:08 PM
41903-57-5	Total-Tetradioxins		0.612	0.0338	2.5	J				pg/g	1	GC36	5/30/13 6:08 PM
36088-22-9	Total-Pentadioxins		0.0780	0.0374	2.5	J				pg/g	1	GC36	5/30/13 6:08 PM
34465-46-8	Total-Hexadioxins		1.06	0.0238	2.5	J				pg/g	1	GC36	5/30/13 6:08 PM
37871-00-4	Total-Heptadioxins		16.3	0.0614	2.5					pg/g	1	GC36	5/30/13 6:08 PM
55722-27-5	Total-Tetrafurans		0.136	0.0370	2.5	J				pg/g	1	GC36	5/30/13 6:08 PM
30402-15-4	Total-Pentafurans		1.20	0.0320	2.5	J				pg/g	1	GC36	5/30/13 6:08 PM
55684-94-1	Total-Hexafurans		3.01	0.0214	2.5					pg/g	1	GC36	5/30/13 6:08 PM
30402-15-4	Total-Heptafurans		6.47	0.0462	2.5					pg/g	1	GC36	5/30/13 6:08 PM
							Т	otal TEQ	1.13				
Cleanup S	Standard												
	37CI-2,3,7,8-TCDD		82	35-197						%REC	1	GC36	5/30/13 6:08 PM
Labeled (Compound Recovery												
	13C-2,3,7,8-TCDD		83	25-164						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,7,8-PeCDD		76	25-181						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,4,7,8-HxCDD		85	32-141						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,6,7,8-HxCDD		66	28-130						%REC	1	GC36	5/30/13 6:08 PM

CLIENT: Geologica Inc. Work Order: 1305623

Client Sample ID: SS-FD Lab ID: 1305623-007A

Project: Glenview Sampling Matrix: SOIL

Collection Date: 5/17/2013 12:10:00 PM

Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans

Extraction Method: Batch ID: 77602 Analytical Method: SW8290

CAS#	Analytes	TEF	Result	EDL	RL	Qual	Ion Ratio	RRT	TEQ	Units	DF	Instru -ment	DateAnalyzed
	13C-1,2,3,4,6,7,8-HpCDD		68	23-140						%REC	1	GC36	5/30/13 6:08 PM
	13C-OCDD		35	17-157						%REC	1	GC36	5/30/13 6:08 PM
	13C-2,3,7,8-TCDF		72	24-169						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,7,8-PeCDF		67	24-185						%REC	1	GC36	5/30/13 6:08 PM
	13C-2,3,4,7,8-PeCDF		67	21-178						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,4,7,8-HxCDF		68	26-152						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,6,7,8-HxCDF		60	26-123						%REC	1	GC36	5/30/13 6:08 PM
	13C-2,3,4,6,7,8-HxCDF		66	28-136						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,7,8,9-HxCDF		70	29-147						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,4,6,7,8-HpCDF		48	28-143						%REC	1	GC36	5/30/13 6:08 PM
	13C-1,2,3,4,7,8,9-HpCDF		71	26-138						%REC	1	GC36	5/30/13 6:08 PM

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below Reporting Limit

B - Analyte detected in the associated Method Blank

H - Analyzed out of Holding Time

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

M - Estimate Maximum Possible Concentration

"When Qua	Quality Counts'' http://www.mccampbell.com / E-mail: main@mccampbell.com							
Geologica Inc.	Client Pro	oject ID: Glenvi	iew Sampling	Date Sampled:	05/17/13			
				Date Received:	05/20/13			
5 3rd St # 224	Client Co	ontact: Daniel M	atthew	Date Extracted	05/20/13			
San Francisco, CA 94103	Client P.0	<u> </u>		Date Analyzed	05/22/12			
Sali Francisco, CA 94103				Date Analyzed	J3/23/13			
	C	AM / CCR 17 Me	tals*					
Lab ID	1305623-001A	1305623-002A	1305623-003A	1305623-004A	Reporting Lir	nit for DF =1;		
Client ID	1655	1110	1690	1701		not detected eporting limit		
Matrix	S	S	S S S					
Extraction Type	TOTAL	TOTAL	TOTAL					
ICP Metals, Concentration*						1305623		
Dilution Factor	1	1	1	1	1	1		
Antimony	ND<0.52	ND<0.67	1.0	ND<0.62	0.5	NA		
Arsenic	7.5	4.2	5.0	5.3	0.5	NA		
Barium	93	70	88	86	5.0	NA		
Beryllium	ND<0.52	ND<0.67	ND<0.60	ND<0.62	0.5	NA		
Cadmium	ND<0.26	ND<0.34	ND<0.30	ND<0.31	0.25	NA		
Chromium	55	48	67	64	0.5	NA		
Cobalt	7.1	4.9	8.6	7.1	0.5	NA		
Copper	11	16	27	14	0.5	NA		
Lead	15	22	28	9.0	0.5	NA		
Mercury	0.058	ND<0.067	ND<0.060	ND<0.062	0.05	NA		
Molybdenum	0.53	ND<0.67	ND<0.60	ND<0.62	0.5	NA		
Nickel	45	31	54	49	0.5	NA		
Selenium	ND<0.52	ND<0.67	ND<0.60	ND<0.62	0.5	NA		
Silver	ND<0.52	ND<0.67	ND<0.60	ND<0.62	0.5	NA		
Thallium	ND<0.52	ND<0.67	ND<0.60	ND<0.62	0.5	NA		
Vanadium	37	31	58	44 0.5 N				
Zinc	60	59	110	49	5.0	NA		
%SS:	90	88	86	92				
	<u> </u>	I	1					
Comments	Comments i1 i1 i1 i1							

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of 0.45 µm filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

i1) results are reported on a dry weight basis

"When Quality Counts" http://www.mccampbell.com/E-mail: main@mccampbell.com						m	
Geologica Inc.	Client P	roject ID: Glenv	iew Sampling	Date Sampled:	05/17/13		
				Date Received:	05/20/13		
5 3rd St # 224	Client C	ontact: Daniel M	atthew	Date Extracted	05/20/13		
~	<u> </u>		attricw				
San Francisco, CA 94103	Client P	.O.:		Date Analyzed	05/23/13		
	•	CAM / CCR 17 Me	tals*				
Lab II	1305623-005A	1305623-006A	1305623-007A		Reporting Lin	mit for DF =1;	
Client II	981	SS-BG	SS-FD		ND means r above the re	not detected eporting limit	
Matrix	s S	S	S		S	W	
Extraction Type	TOTAL	TOTAL	TOTAL		mg/Kg	mg/L	
Analytical Method: SW6020		P Metals, Concent			Work Order:	1305623	
Dilution Factor	<u> </u>	1	1		1	1	
Antimony	1.6	ND<0.51	ND<0.65		0.5	NA	
Arsenic	12	5.3	5.2		0.5	NA	
Barium	91	66	79		5.0	NA	
Beryllium	ND<0.61	ND<0.51	ND<0.65		0.5	NA	
Cadmium	0.44	ND	ND<0.33		0.25	NA	
Chromium	57	88	61		0.5	NA	
Cobalt	9.3	11	5.8		0.5	NA	
Copper	38	24	21		0.5	NA	
Lead	30	28	23		0.5	NA	
Mercury	0.090	0.056	ND<0.065		0.05	NA	
Molybdenum	ND<0.61	0.57	ND<0.65		0.5	NA	
Nickel	53	79	41		0.5	NA	
Selenium	ND<0.61	ND<0.51	ND<0.65		0.5	NA	
Silver	ND<0.61	ND<0.51	ND<0.65		0.5	NA	
Thallium	ND<0.61	ND<0.51	ND<0.65		0.5	NA	
Vanadium	44	50	35		0.5	NA	
Zinc	190	78	78		5.0	NA	
%SS:	93	85	91				
	1		1				
Comments	i1	i1	i1				

*water samples are reported in μ g/L, product/oil/non-aqueous liquid samples and all TCLP / STLC / DISTLC / SPLP extracts are reported in mg/L, soil/sludge/solid samples in mg/kg, wipe samples in μ g/wipe, filter samples in μ g/filter.

means surrogate diluted out of range; ND means not detected above the reporting limit/method detection limit; N/A means not applicable to this sample or instrument.

TOTAL = Hot acid digestion of a representative sample aliquot.

TRM = Total recoverable metals is the "direct analysis" of a sample aliquot taken from its acid-preserved container.

DISS = Dissolved metals by direct analysis of 0.45 µm filtered and acidified sample.

%SS = Percent Recovery of Surrogate Standard

DF = Dilution Factor

i1) results are reported on a dry weight basis

DHS ELAP Certification 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Toll Free Telephone: (877) 252-9262 / Fax: (925) 252-9269 http://www.mccampbell.com / E-mail: main@mccampbell.com

	''When Quality Coi	ints"	http://www.mccampbell.com/ E-mail: main@mccampbell.com						
Geologica In	c.	Client Project ID:	Glen	view Sampling	Date Sampled:	05/17/13			
5 3rd St # 22	4				Date Received:	05/20/13			
2 210 20 11 22		Client Contact: Da	aniel l	Matthew	Date Extracted:	05/23/13			
San Francisco	o, CA 94103	Client P.O.:			Date Analyzed	05/24/13			
		Percent 1	Moist	ure					
	od: ASTMD2216-92					Work Order:			
Lab ID	Client ID	Ma	trix		% Moisture		Comments		
1305623-001A	1655		S		3.83				
1305623-002A	1110	2	S		25.6				
1305623-003A	1690		S		16.7				
1305623-004A	1701		S		19.9				
1305623-005A	981	\$	S		18.1				
1305623-006A	SS-BG		S		1.82				
1305623-007A	SS-FD		S		23.4				
Reporting Limit	or Method Accuracy and Reporting Units	; ND means not	V		NA				
. J	detected at or above the reporting limit		S	:	±0.1, wet wt%				
A = mass of the to B = mass of the contract B	t, % = [(A - B) x 100)] / A otal, as received, sample (i.e., "wet voven-dried sample	weight")							
DF = Dilution Fa	ctor								

RB Analyst's Initial — Angela Rydelius, Lab Manager

QC SUMMARY REPORT FOR SW8270C

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77568 WorkOrder: 1305623

EPA Method: SW8270C-SIM Extraction: S	W3550B					;	Spiked Sam	ple ID:	1305623-001A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
, wally to	mg/kg	mg/kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Benzo (a) pyrene	ND	0.20	100	106	6.11	53.3	30 - 130	30	30 - 130
Chrysene	ND	0.20	95.9	99.1	3.31	71.4	30 - 130	30	30 - 130
1-Methylnaphthalene	ND	0.20	100	114	13.2	78.6	30 - 130	30	30 - 130
2-Methylnaphthalene	ND	0.20	83.9	89.2	6.09	66.1	30 - 130	30	30 - 130
Phenanthrene	ND	0.20	89.5	93.7	4.57	73.3	30 - 130	30	30 - 130
Pyrene	ND	0.20	114	119	4.52	78.5	30 - 130	30	30 - 130
%SS1:	95	0.50	119	124	4.63	101	30 - 130	30	30 - 130
%SS2:	88	0.50	108	112	4.21	91	30 - 130	30	30 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77568 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305623-001A	05/17/13 11:30 AM	05/21/13	05/22/13 5:46 PM	1305623-002A	05/17/13 12:00 PM	05/21/13	05/21/13 6:52 PM
1305623-003A	05/17/13 11:40 AM	05/21/13	05/21/13 8:59 PM	1305623-004A	05/17/13 12:20 PM	05/21/13	05/23/13 7:59 PM
1305623-005A	05/17/13 12:30 PM	05/21/13	05/22/13 5:21 PM	1305623-006A	05/17/13 12:50 PM	05/21/13	05/21/13 8:33 PM
1305623-007A	05/17/13 12:10 PM	05/21/13	05/21/13 7:17 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

A/QC Officer

Geologica Inc.

ANALYTICAL QC SUMMARY REPORT

Date: 10-Jul-13

Work Order: 1305623

CLIENT:

Project: Glenview Sampling BatchID: 77602

SampleID MB-77602	TestCode: 8290	_FULL_S			Units:	pg/g		Prep Date:	5/21/2013	
Batch ID: 77602	TestNo: SW8	3290			Run ID:	GC36_	130531A	Analysis Date:	5/30/2013	
Analyte	Result	EDL	PQL S	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPI) RPDLimit	Qual
2,3,7,8-TCDD	ND	0.0310	0.500				-			
1,2,3,7,8-PeCDD	ND	0.0302	2.50				-			
1,2,3,4,7,8-HxCDD	ND	0.0276	2.50				-			
1,2,3,6,7,8-HxCDD	ND	0.0334	2.50				-			
1,2,3,7,8,9-HxCDD	ND	0.0304	2.50				-			
1,2,3,4,6,7,8-HpCDD	ND	0.0268	2.50				-			
OCDD	ND	0.0392	5.00				-			
2,3,7,8-TCDF	ND	0.0270	0.500				-			
1,2,3,7,8-PeCDF	ND	0.0220	2.50				-			
2,3,4,7,8-PeCDF	ND	0.0206	2.50				-			
1,2,3,4,7,8-HxCDF	ND	0.0150	2.50				-			
1,2,3,6,7,8-HxCDF	ND	0.0144	2.50				-			
1,2,3,7,8,9-HxCDF	ND	0.0204	2.50				-			
2,3,4,6,7,8-HxCDF	ND	0.0164	2.50				-			
1,2,3,4,6,7,8-HpCDF	ND	0.0150	2.50				-			
1,2,3,4,7,8,9-HpCDF	ND	0.0224	2.50				-			
OCDF	ND	0.0680	5.00				-			
Cleanup Standard										
37CI-2,3,7,8-TCDD	8.782			10		88	35 - 197			
Labeled Compound Recovery										
13C-2,3,7,8-TCDD	90.07			100		90	25 - 164			
13C-1,2,3,7,8-PeCDD	79.95			100		80	25 - 181			
13C-1,2,3,4,7,8-HxCDD	94.96			100		95	32 - 141			
13C-1,2,3,6,7,8-HxCDD	75.09			100		75	28 - 130			
13C-1,2,3,4,6,7,8-HpCDD	87.7			100		88	23 - 140			
13C-OCDD	185.3			200		93	17 - 157			
13C-2,3,7,8-TCDF	78.25			100		78	24 - 169			
13C-1,2,3,7,8-PeCDF	70.93			100		71	24 - 185			
13C-2,3,4,7,8-PeCDF	70.34			100		70	21 - 178			
13C-1,2,3,4,7,8-HxCDF	78.5			100		79	26 - 152			
13C-1,2,3,6,7,8-HxCDF	69.41			100		69	26 - 123			
13C-2,3,4,6,7,8-HxCDF	74.64			100		75	28 - 136			
13C-1,2,3,7,8,9-HxCDF	82.79			100		83	29 - 147			
13C-1,2,3,4,6,7,8-HpCDF	75.05			100		75	28 - 143			
13C-1,2,3,4,7,8,9-HpCDF	84.9			100		85	26 - 138			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

M - Estimate Maximum Possible Concentration

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

CLIENT: Geologica Inc. **Work Order:** 1305623

ANALYTICAL QC SUMMARY REPORT

Project: Glenview Sampling

BatchID: 77602

	TestCode: 8290_F	-ULL_S			Units:	pg/g		Prep Date: 5	/21/2013	
Batch ID: 77602	TestNo: SW829	90			Run ID:	GC36_	130531A	Analysis Date: 5	/30/2013	
Analyte	Result	MDL	PQL	SPKValue	SPKRefVal	%REC	Limits	RPDRefVal %RPD	RPDLimit	Qual
2,3,7,8-TCDD	7.912	0.500	0.500	10	0	79.1	67 - 158			
1,2,3,7,8-PeCDD	40.67	2.50	2.50	50	0	81.3	70 - 142			
1,2,3,4,7,8-HxCDD	38.59	2.50	2.50	50	0	77.2	70 - 164			
1,2,3,6,7,8-HxCDD	42.62	2.50	2.50	50	0	85.2	76 - 134			
1,2,3,7,8,9-HxCDD	43.15	2.50	2.50	50	0	86.3	64 - 162			
1,2,3,4,6,7,8-HpCDD	40.05	2.50	2.50	50	0	80.1	70 - 140			
OCDD	83.38	5.00	5.00	100	0	83.4	78 - 144			
2,3,7,8-TCDF	7.662	0.500	0.500	10	0	76.6	75 - 158			
1,2,3,7,8-PeCDF	41.18	2.50	2.50	50	0	82.4	80 - 134			
2,3,4,7,8-PeCDF	40.1	2.50	2.50	50	0	80.2	68 - 160			
1,2,3,4,7,8-HxCDF	42.42	2.50	2.50	50	0	84.8	72 - 134			
1,2,3,6,7,8-HxCDF	41.19	2.50	2.50	50	0	82.4	84 - 130			S
1,2,3,7,8,9-HxCDF	44.04	2.50	2.50	50	0	88.1	78 - 130			
2,3,4,6,7,8-HxCDF	42.25	2.50	2.50	50	0	84.5	70 - 156			
1,2,3,4,6,7,8-HpCDF	39.46	2.50	2.50	50	0	78.9	82 - 122			S
1,2,3,4,7,8,9-HpCDF	41.56	2.50	2.50	50	0	83.1	78 - 138			
OCDF	85.53	5.00	5.00	100	0	85.5	63 - 170			
Cleanup Standard										
37CI-2,3,7,8-TCDD	9.194			10		92	31 - 191			
Labeled Compound Recovery										
13C-2,3,7,8-TCDD	91.55			100		92	20 - 175			
13C-1,2,3,7,8-PeCDD	81.99			100		82	21 - 227			
13C-1,2,3,4,7,8-HxCDD	95.84			100		96	21 - 193			
13C-1,2,3,6,7,8-HxCDD	77.08			100		77	25 - 163			
13C-1,2,3,4,6,7,8-HpCDD	88.75			100		89	26 - 166			
13C-OCDD	188			200		94	13 - 199			
13C-2,3,7,8-TCDF	79.15			100		79	22 - 152			
13C-1,2,3,7,8-PeCDF	72.35			100		72	21 - 192			
13C-2,3,4,7,8-PeCDF	72.2			100		72	13 - 328			
13C-1,2,3,4,7,8-HxCDF	80.37			100		80	19 - 202			
13C-1,2,3,6,7,8-HxCDF	72.58			100		73	21 - 159			
13C-2,3,4,6,7,8-HxCDF	76.31			100		76	22 - 176			
13C-1,2,3,7,8,9-HxCDF	82.44			100		82	17 - 205			
13C-1,2,3,4,6,7,8-HpCDF	75.29			100		75	21 - 158			
13C-1,2,3,4,7,8,9-HpCDF	86.52			100		87	20 - 186			

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

M - Estimate Maximum Possible Concentration

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

QC SUMMARY REPORT FOR SW6020

W.O. Sample Matrix: Soil QC Matrix: Soil BatchID: 77524 WorkOrder: 1305623

EPA Method: SW6020 Extraction:	SW3050B						Spiked Sam	ple ID:	1305623-007A
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	Acc	eptance	Criteria (%)
Analyte	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	MS / MSD	RPD	LCS
Antimony	ND	50	94.4	90	4.75	98.4	75 - 125	20	75 - 125
Arsenic	4.0	50	94.2	94.8	0.605	104	75 - 125	20	75 - 125
Barium	61	500	98.2	95.3	2.63	94.9	75 - 125	20	75 - 125
Beryllium	ND	50	86.1	84.1	2.24	98.1	75 - 125	20	75 - 125
Cadmium	ND	50	94.7	90.5	4.50	99.4	75 - 125	20	75 - 125
Chromium	46	50	93.7	100	3.38	102	75 - 125	20	75 - 125
Cobalt	4.4	50	92.3	87.5	4.90	99.2	75 - 125	20	75 - 125
Copper	16	50	87.9	82.1	4.89	99.9	75 - 125	20	75 - 125
Lead	18	50	91.9	80.3	9.53	93.5	75 - 125	20	75 - 125
Mercury	ND	1.25	87.6	85.3	2.58	97	75 - 125	20	75 - 125
Molybdenum	ND	50	92.4	87.7	5.13	93.9	75 - 125	20	75 - 125
Nickel	32	50	89.7	104	8.87	99.2	75 - 125	20	75 - 125
Selenium	ND	50	103	97.2	5.84	110	75 - 125	20	75 - 125
Silver	ND	50	91	87.5	3.90	98.6	75 - 125	20	75 - 125
Thallium	ND	50	94.4	90.4	4.28	95	75 - 125	20	75 - 125
Vanadium	27	50	101	100	0.478	100	75 - 125	20	75 - 125
Zinc	60	500	99.1	97	1.89	107	75 - 125	20	75 - 125
%SS:	91	500	89	85	4.45	90	70 - 130	20	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 77524 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305623-001A	05/17/13 11:30 AM	05/20/13	05/23/13 7:38 AM	1305623-002A	05/17/13 12:00 PM	05/20/13	05/23/13 7:44 AM
1305623-003A	05/17/13 11:40 AM	05/20/13	05/23/13 7:50 AM	1305623-004A	05/17/13 12:20 PM	05/20/13	05/23/13 7:55 AM
1305623-005A	05/17/13 12:30 PM	05/20/13	05/23/13 11:36 PM	1305623-006A	05/17/13 12:50 PM	05/20/13	05/23/13 11:42 PM
1305623-007A	05/17/13 12:10 PM	05/20/13	05/23/13 11:48 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not applicable to this method.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

DHS ELAP Certification 1644

QA/QC Officer

QC SUMMARY REPORT FOR WET CHEMISTRY TESTS

Test Method: ASTM D2216-92 (Percent Moisture) Matrix: S WorkOrder: 1305623

Method Name: ASTMD2216-92			Units: ±, wet	BatchID: 77706			
Lab ID	Sample	DF	Dup / Ser. Dil.	DF	% RPD	Acceptance Criteria (%)	
1305623-001A	3.83	2.48	3.74	2.582	2.27	<15	
1305623-002A	25.6	2.27	23.6	2.307	8.22	<15	
1305623-003A	16.7	2.27	16.2	2.118	3	<15	
1305623-004A	19.9	2.21	19.5	2.114	1.81	<15	
1305623-005A	18.1	3.54	17.0	3.31	6.1	<15	
1305623-006A	1.82	2.35	1.75	2.271	3.9	<15	
1305623-007A	23.4	2.54	23.5	2.425	0.504	<15	

BATCH 77706 SUMMARY

Lab ID	Date Sampled Da	te Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
1305623-001A	05/17/13 11:30 AM	05/23/13 (05/24/13 12:00 PM	1305623-002A	05/17/13 12:00 PM	05/23/13	05/24/13 12:10 PM
1305623-003A	05/17/13 11:40 AM	05/23/13	05/24/13 12:20 PM	1305623-004A	05/17/13 12:20 PM	05/23/13	05/24/13 12:30 PM
1305623-005A	05/17/13 12:30 PM	05/23/13	05/24/13 12:40 PM	1305623-006A	05/17/13 12:50 PM	05/23/13	05/24/13 12:50 PM
1305623-007A	05/17/13 12:10 PM	05/23/13	05/24/13 1:00 PM				

Dup = Duplicate; Ser. Dil. = Serial Dilution; MS = Matrix Spike; RD = Relative Difference; RPD = Relative Percent Deviation.

Precision = Absolute Value (Sample - Duplicate)

RPD = 100 * (Sample - Duplicate) / [(Sample + Duplicate) / 2]

%RPD is calculated using results of up to 10 significant figures, however the reported results are rounded to 2 or 3 significant figures. Therefore there may be a slight discrepancy between the %RPD displayed above and %RPD calculated using the reported results. MAI considers %RPD based upon more significant figures to be more accurate.

OC for QA/QC Officer

Bulk Asbestos Analysis (EPA Method 600/R-93-116, Visual Area Estimation)

McCampbell Analytical, Inc. Account Payable 1534 Wilow Pass Rd Pittsburg, CA 94565						Client ID: A31409 Report Number: B177632 Date Received: 05/22/13 Date Analyzed: 05/30/13 Date Printed: 05/30/13 First Reported: 05/30/13			
Job ID/Site: Glenview Sampling					FALI Job ID	: A3140)9		
Date(s) Collected: 05/17/2013				Total Samples Submitted: 7 Total Samples Analyzed: 7					
Sample ID	Lab Numbe	Asbestos r Type	Percent in Layer	Asbestos Type	Percent in Layer	Asbestos Type	Percent in Layer		
1655 Layer: Tan Soil	11383089		ND						
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)							
1110 Layer: Dark Brown Soil	11383090		ND						
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)							
1690 Layer: Dark Brown Soil Total Composite Values of Fibrous Con Cellulose (Trace)	11383091 apponents:	Asbestos (ND)	ND						
1701 Layer: Brown/Grey Soil	11383092		ND						
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)							
981 Layer: Dark Brown Soil	11383093		ND						
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)							
SS-BG Layer: Tan Soil	11383094		ND						
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)							
44-FD Layer: Dark Brown Soil	11383095		ND						
Total Composite Values of Fibrous Con Cellulose (Trace)	nponents:	Asbestos (ND)							

					Report Numb	oer: B1776	532
Client Name: McCampbell	Analytical, Inc.				Date Printed	: 05/30/	/13
		Asbestos	Percent in	Asbestos	Percent in	Asbestos	Percent in
Sample ID	Lab Number	Type	Laver	Type	Laver	Type	Laver

Tad Thrower, Laboratory Supervisor, Hayward Laboratory

Note: Limit of Quantification ('LOQ') = 1%. 'Trace' denotes the presence of asbestos below the LOQ. 'ND' = 'None Detected'.

Analytical results and reports are generated by Forensic Analytical Laboratories Inc. (FALI) at the request of and for the exclusive use of the person or entity (client) named on such report. Results, reports or copies of same will not be released by FALI to any third party without prior written request from client. This report applies only to the sample(s) tested. Supporting laboratory documentation is available upon request. This report must not be reproduced except in full, unless approved by FALI. The client is solely responsible for the use and interpretation of test results and reports requested from FALI. Forensic Analytical Laboratories Inc. is not able to assess the degree of hazard resulting from materials analyzed. FALI reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified. All samples were received in acceptable condition unless otherwise noted.

1.0 DATA VALIDATION REVIEW

Seven field soil samples, two of which constitutes a duplicate pair were analyzed at McCampbell Analytical, Ltd. Of Pittsburg, California for PAHs, Cam 17 Metals and Dioxins and Furans. The validation for these samples is summarized in individual validation reports, by analysis. The following is a brief summary of the validation results

1.1 Polyaromatic Hydrocarbons (U.S. EPA Method 8270C SIM)

The results were reviewed for holding time compliance, surrogate recoveries, matrix spike and matrix spike duplicate recoveries, laboratory control samples (blank spikes) method blanks field blanks, field duplicates, and dilution and reporting limits.

There were two anomalies that did not result in the qualification or rejection of results:

- 1. The surrogates were diluted out of one sample, sample 1690. This has no effect on the results since the diluted surrogate recovery cannot be used to evaluate accuracy.
- 2. Sample 1690 underwent a dilution by a factor of 10 and sample SS-BG was diluted by a factor of two. The laboratory did not say why the dilutions were performed. Reporting limits were increased by the same factors as the dilutions.

1.2 Cam 17 Metals (U.S. EPA Method 6020 /7471 for mercury)

The results were reviewed for holding time, surrogate recovery (McCampbell uses a surrogate for metals anlysis), matrix spike and matrix spike duplicate recoveries, laboratory control samples (blank spikes), method blanks, field blanks, field duplicates, and dilutions and reporting limits.

No anomalies were noted

1.3 Dioxins and Dibenzofurans (U.S. EPA Method 8290)

The results were reviewed for holding time; cleanup standard recovery, matrix spike and matrix spike duplicate recoveries (not submitted by the laboratory), laboratory control samples (blank spikes), method blanks, field blanks, field duplicates, labeled standards, and dilutions and reporting limits. These are the only QC items submitted by the laboratory.

The following anomalies were noted:

- 1. 1,2,3,6,7,8-HxCDF and 1,2,3,4,6,7,8-HpCDF were both recovered below their QC acceptance range. Unless pre-qualified as an estimated concentration due to the anomaly noted below in Item 2, all reported concentrations of these compounds were flagged "J", estimated.
- 2. All concentrations between the EDL and the RL were flagged "J", estimated.

1.4 Summary

Based upon this limited validation, these data are usable as qualified.

